Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals
We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency...
Gespeichert in:
Veröffentlicht in: | Neurophysiology (New York) 2019-01, Vol.51 (1), p.2-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | Neurophysiology (New York) |
container_volume | 51 |
creator | Kekovic, G Sekulic, S |
description | We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band |
doi_str_mv | 10.1007/s11062-019-09783-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2225946617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597716184</galeid><sourcerecordid>A597716184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</originalsourceid><addsrcrecordid>eNqFkU9rFDEYh4NYcG39Ap4CnjxMzf9MvC3rthYqlu6Kx5DNZKYps8maZLfdb2_aEaQXJYcXkuf38iMPAO8xOscIyU8ZYyRIg7BqkJItbY6vwAxzSRtVn1-DGUIKNURJ-Qa8zfkeISRaxWfg4YsrzhYfA4w9XNyZMDh4E30oGfoA137r4Mol7zJ88OUOfosHHwY4P7hkKnnhx-JShiZ08Kc5uNEVuE4m5D6m7Wc43-1Gb83z-hLhcnkJV34IZsxn4KSvw737M0_Bj4vlevG1uf5-ebWYXzeWEVQaRTBplcLGkZbWxqaTEkvc8U3LGOJYUG5IzwyRWGws7SQTVmyY5W1HOyMpPQUfpr27FH_tXS76Pu7TUwNNCOGKCYHlfyjMBeNIVep8ogYzOu1DH0sytp7Obb2NwfW-3s95_WUscMtq4OOLQGWKeyyD2eesr1a3L1kysTbFnJPr9S75rUlHjZF-cqwnx7o61s-O9bGG6BTKFa7m0t_e_0j9BrKypxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221564509</pqid></control><display><type>article</type><title>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</title><source>SpringerNature Journals</source><creator>Kekovic, G ; Sekulic, S</creator><creatorcontrib>Kekovic, G ; Sekulic, S</creatorcontrib><description>We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band <40 Hz. This means that detection of structural change points is almost guaranteed in the respective cases. The mean absolute error (MAE) as a measure of performance of the method was below 5%. The method is rather robust against noise. It has been demonstrated that CPD is possible at the noise amplitude exceeding 25% of the amplitude of harmonic functions. In application of the proposed method on the signals, CPD appeared in 74% of the analyzed EEGs.</description><identifier>ISSN: 0090-2977</identifier><identifier>EISSN: 1573-9007</identifier><identifier>DOI: 10.1007/s11062-019-09783-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banks (Finance) ; Biomedical and Life Sciences ; Biomedicine ; EEG ; Electroencephalography ; Filters ; Neurophysiology ; Neurosciences ; Noise ; Numerical analysis ; Time series ; Wavelet transforms</subject><ispartof>Neurophysiology (New York), 2019-01, Vol.51 (1), p.2-8</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Neurophysiology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</citedby><cites>FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11062-019-09783-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11062-019-09783-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Kekovic, G</creatorcontrib><creatorcontrib>Sekulic, S</creatorcontrib><title>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</title><title>Neurophysiology (New York)</title><addtitle>Neurophysiology</addtitle><description>We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band <40 Hz. This means that detection of structural change points is almost guaranteed in the respective cases. The mean absolute error (MAE) as a measure of performance of the method was below 5%. The method is rather robust against noise. It has been demonstrated that CPD is possible at the noise amplitude exceeding 25% of the amplitude of harmonic functions. In application of the proposed method on the signals, CPD appeared in 74% of the analyzed EEGs.</description><subject>Banks (Finance)</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Filters</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>0090-2977</issn><issn>1573-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rFDEYh4NYcG39Ap4CnjxMzf9MvC3rthYqlu6Kx5DNZKYps8maZLfdb2_aEaQXJYcXkuf38iMPAO8xOscIyU8ZYyRIg7BqkJItbY6vwAxzSRtVn1-DGUIKNURJ-Qa8zfkeISRaxWfg4YsrzhYfA4w9XNyZMDh4E30oGfoA137r4Mol7zJ88OUOfosHHwY4P7hkKnnhx-JShiZ08Kc5uNEVuE4m5D6m7Wc43-1Gb83z-hLhcnkJV34IZsxn4KSvw737M0_Bj4vlevG1uf5-ebWYXzeWEVQaRTBplcLGkZbWxqaTEkvc8U3LGOJYUG5IzwyRWGws7SQTVmyY5W1HOyMpPQUfpr27FH_tXS76Pu7TUwNNCOGKCYHlfyjMBeNIVep8ogYzOu1DH0sytp7Obb2NwfW-3s95_WUscMtq4OOLQGWKeyyD2eesr1a3L1kysTbFnJPr9S75rUlHjZF-cqwnx7o61s-O9bGG6BTKFa7m0t_e_0j9BrKypxA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kekovic, G</creator><creator>Sekulic, S</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20190101</creationdate><title>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</title><author>Kekovic, G ; Sekulic, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Banks (Finance)</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Filters</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kekovic, G</creatorcontrib><creatorcontrib>Sekulic, S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Neurophysiology (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kekovic, G</au><au>Sekulic, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</atitle><jtitle>Neurophysiology (New York)</jtitle><stitle>Neurophysiology</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>51</volume><issue>1</issue><spage>2</spage><epage>8</epage><pages>2-8</pages><issn>0090-2977</issn><eissn>1573-9007</eissn><abstract>We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band <40 Hz. This means that detection of structural change points is almost guaranteed in the respective cases. The mean absolute error (MAE) as a measure of performance of the method was below 5%. The method is rather robust against noise. It has been demonstrated that CPD is possible at the noise amplitude exceeding 25% of the amplitude of harmonic functions. In application of the proposed method on the signals, CPD appeared in 74% of the analyzed EEGs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11062-019-09783-y</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-2977 |
ispartof | Neurophysiology (New York), 2019-01, Vol.51 (1), p.2-8 |
issn | 0090-2977 1573-9007 |
language | eng |
recordid | cdi_proquest_journals_2225946617 |
source | SpringerNature Journals |
subjects | Banks (Finance) Biomedical and Life Sciences Biomedicine EEG Electroencephalography Filters Neurophysiology Neurosciences Noise Numerical analysis Time series Wavelet transforms |
title | Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Change%20Points%20in%20Time%20Series%20with%20Moving%20Average%20Filters%20and%20Wavelet%20Transform:%20Application%20to%20EEG%20Signals&rft.jtitle=Neurophysiology%20(New%20York)&rft.au=Kekovic,%20G&rft.date=2019-01-01&rft.volume=51&rft.issue=1&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.issn=0090-2977&rft.eissn=1573-9007&rft_id=info:doi/10.1007/s11062-019-09783-y&rft_dat=%3Cgale_proqu%3EA597716184%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221564509&rft_id=info:pmid/&rft_galeid=A597716184&rfr_iscdi=true |