Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals

We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurophysiology (New York) 2019-01, Vol.51 (1), p.2-8
Hauptverfasser: Kekovic, G, Sekulic, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 2
container_title Neurophysiology (New York)
container_volume 51
creator Kekovic, G
Sekulic, S
description We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band
doi_str_mv 10.1007/s11062-019-09783-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2225946617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597716184</galeid><sourcerecordid>A597716184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</originalsourceid><addsrcrecordid>eNqFkU9rFDEYh4NYcG39Ap4CnjxMzf9MvC3rthYqlu6Kx5DNZKYps8maZLfdb2_aEaQXJYcXkuf38iMPAO8xOscIyU8ZYyRIg7BqkJItbY6vwAxzSRtVn1-DGUIKNURJ-Qa8zfkeISRaxWfg4YsrzhYfA4w9XNyZMDh4E30oGfoA137r4Mol7zJ88OUOfosHHwY4P7hkKnnhx-JShiZ08Kc5uNEVuE4m5D6m7Wc43-1Gb83z-hLhcnkJV34IZsxn4KSvw737M0_Bj4vlevG1uf5-ebWYXzeWEVQaRTBplcLGkZbWxqaTEkvc8U3LGOJYUG5IzwyRWGws7SQTVmyY5W1HOyMpPQUfpr27FH_tXS76Pu7TUwNNCOGKCYHlfyjMBeNIVep8ogYzOu1DH0sytp7Obb2NwfW-3s95_WUscMtq4OOLQGWKeyyD2eesr1a3L1kysTbFnJPr9S75rUlHjZF-cqwnx7o61s-O9bGG6BTKFa7m0t_e_0j9BrKypxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221564509</pqid></control><display><type>article</type><title>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</title><source>SpringerNature Journals</source><creator>Kekovic, G ; Sekulic, S</creator><creatorcontrib>Kekovic, G ; Sekulic, S</creatorcontrib><description>We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band &lt;40 Hz. This means that detection of structural change points is almost guaranteed in the respective cases. The mean absolute error (MAE) as a measure of performance of the method was below 5%. The method is rather robust against noise. It has been demonstrated that CPD is possible at the noise amplitude exceeding 25% of the amplitude of harmonic functions. In application of the proposed method on the signals, CPD appeared in 74% of the analyzed EEGs.</description><identifier>ISSN: 0090-2977</identifier><identifier>EISSN: 1573-9007</identifier><identifier>DOI: 10.1007/s11062-019-09783-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banks (Finance) ; Biomedical and Life Sciences ; Biomedicine ; EEG ; Electroencephalography ; Filters ; Neurophysiology ; Neurosciences ; Noise ; Numerical analysis ; Time series ; Wavelet transforms</subject><ispartof>Neurophysiology (New York), 2019-01, Vol.51 (1), p.2-8</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Neurophysiology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</citedby><cites>FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11062-019-09783-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11062-019-09783-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Kekovic, G</creatorcontrib><creatorcontrib>Sekulic, S</creatorcontrib><title>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</title><title>Neurophysiology (New York)</title><addtitle>Neurophysiology</addtitle><description>We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band &lt;40 Hz. This means that detection of structural change points is almost guaranteed in the respective cases. The mean absolute error (MAE) as a measure of performance of the method was below 5%. The method is rather robust against noise. It has been demonstrated that CPD is possible at the noise amplitude exceeding 25% of the amplitude of harmonic functions. In application of the proposed method on the signals, CPD appeared in 74% of the analyzed EEGs.</description><subject>Banks (Finance)</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Filters</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>0090-2977</issn><issn>1573-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rFDEYh4NYcG39Ap4CnjxMzf9MvC3rthYqlu6Kx5DNZKYps8maZLfdb2_aEaQXJYcXkuf38iMPAO8xOscIyU8ZYyRIg7BqkJItbY6vwAxzSRtVn1-DGUIKNURJ-Qa8zfkeISRaxWfg4YsrzhYfA4w9XNyZMDh4E30oGfoA137r4Mol7zJ88OUOfosHHwY4P7hkKnnhx-JShiZ08Kc5uNEVuE4m5D6m7Wc43-1Gb83z-hLhcnkJV34IZsxn4KSvw737M0_Bj4vlevG1uf5-ebWYXzeWEVQaRTBplcLGkZbWxqaTEkvc8U3LGOJYUG5IzwyRWGws7SQTVmyY5W1HOyMpPQUfpr27FH_tXS76Pu7TUwNNCOGKCYHlfyjMBeNIVep8ogYzOu1DH0sytp7Obb2NwfW-3s95_WUscMtq4OOLQGWKeyyD2eesr1a3L1kysTbFnJPr9S75rUlHjZF-cqwnx7o61s-O9bGG6BTKFa7m0t_e_0j9BrKypxA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Kekovic, G</creator><creator>Sekulic, S</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20190101</creationdate><title>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</title><author>Kekovic, G ; Sekulic, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-92128991ae283689ad77171d5b844051635a2f4a2716bc3d746c6b4c58d3da733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Banks (Finance)</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Filters</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kekovic, G</creatorcontrib><creatorcontrib>Sekulic, S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Neurophysiology (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kekovic, G</au><au>Sekulic, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals</atitle><jtitle>Neurophysiology (New York)</jtitle><stitle>Neurophysiology</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>51</volume><issue>1</issue><spage>2</spage><epage>8</epage><pages>2-8</pages><issn>0090-2977</issn><eissn>1573-9007</eissn><abstract>We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band &lt;40 Hz. This means that detection of structural change points is almost guaranteed in the respective cases. The mean absolute error (MAE) as a measure of performance of the method was below 5%. The method is rather robust against noise. It has been demonstrated that CPD is possible at the noise amplitude exceeding 25% of the amplitude of harmonic functions. In application of the proposed method on the signals, CPD appeared in 74% of the analyzed EEGs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11062-019-09783-y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-2977
ispartof Neurophysiology (New York), 2019-01, Vol.51 (1), p.2-8
issn 0090-2977
1573-9007
language eng
recordid cdi_proquest_journals_2225946617
source SpringerNature Journals
subjects Banks (Finance)
Biomedical and Life Sciences
Biomedicine
EEG
Electroencephalography
Filters
Neurophysiology
Neurosciences
Noise
Numerical analysis
Time series
Wavelet transforms
title Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Change%20Points%20in%20Time%20Series%20with%20Moving%20Average%20Filters%20and%20Wavelet%20Transform:%20Application%20to%20EEG%20Signals&rft.jtitle=Neurophysiology%20(New%20York)&rft.au=Kekovic,%20G&rft.date=2019-01-01&rft.volume=51&rft.issue=1&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.issn=0090-2977&rft.eissn=1573-9007&rft_id=info:doi/10.1007/s11062-019-09783-y&rft_dat=%3Cgale_proqu%3EA597716184%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221564509&rft_id=info:pmid/&rft_galeid=A597716184&rfr_iscdi=true