Detection of Change Points in Time Series with Moving Average Filters and Wavelet Transform: Application to EEG Signals
We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency...
Gespeichert in:
Veröffentlicht in: | Neurophysiology (New York) 2019-01, Vol.51 (1), p.2-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated change point detection (CPD) in time series composed of harmonic functions driven by Gaussian noise (in EEGs, in particular) and proposed a method of moving average filters in conjunction with wavelet transform. Numerical simulations showed that CPD runs over 90% within the frequency band |
---|---|
ISSN: | 0090-2977 1573-9007 |
DOI: | 10.1007/s11062-019-09783-y |