A GPU-accelerated parallel K-means algorithm

Clustering approaches are widely used methodologies to analyse large data sets. The K-means algorithm is well-known as a procedure too computational-intensive for the large data analytic problem. In this work, we focus on a parallel technique to reduce the execution time when the K-means is used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2019-05, Vol.75, p.262-274
Hauptverfasser: Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., Toraldo, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clustering approaches are widely used methodologies to analyse large data sets. The K-means algorithm is well-known as a procedure too computational-intensive for the large data analytic problem. In this work, we focus on a parallel technique to reduce the execution time when the K-means is used to cluster large dataset. We exploit computational powerful of its design when the Graphic Processor Units (GPUs), a massively parallel architecture, is adopted. We optimize the proposed implementation to handle (i) the space limitation issue of GPUs; (ii) the host-device data transfer time. Experimental results, on real and synthetic data, show how our parallelization approach give good results in terms of execution time and speed-up.
ISSN:0045-7906
1879-0755
DOI:10.1016/j.compeleceng.2017.12.002