Eigenvalue monotonicity of q-Laplacians of trees along a poset

Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-06, Vol.571, p.110-131
1. Verfasser: Nagar, Mukesh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue
container_start_page 110
container_title Linear algebra and its applications
container_volume 571
creator Nagar, Mukesh Kumar
description Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decreases. We also prove that for all q∈R with |q|≥1, going up on GTSn increases the second smallest eigenvalue of LTq. These generalize known results for eigenvalues of the Laplacian matrix of trees. As a corollary, we obtain consequences about the eigenvalues of q,t-Laplacians and exponential distance matrices of trees.
doi_str_mv 10.1016/j.laa.2019.02.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225229225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519300801</els_id><sourcerecordid>2225229225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-e5daec0299b28a8b28df8781ef02cb4abb2abfd47629050fb84409cfebacd7de3</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLeA58TZSdJsEAQprQoFL3peNpvZsiHNprtpof_eLfXs5Q0D7808PsYeOWQc-OK5y3qlMgReZ4AZcHHFZlxUecpFubhmMwAs0ryqy1t2F0IHAEUFOGOvK7ul4aj6AyU7N7jJDVbb6ZQ4k-zTjRp7pa0awnmfPFFIVO-GbaKS0QWa7tmNUX2gh785Zz_r1ffyI918vX8u3zapzhGmlMpWkQas6waFElFaIyrByQDqplBNg6oxbVEtsIYSTCOKAmptqFG6rVrK5-zpcnf0bn-gMMnOHfwQX0pELBHrqNHFLy7tXQiejBy93Sl_khzkGZPsZMQkz5gkoIyYYublkqFY_2jJy6AtDZpa60lPsnX2n_Qvd7pwQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225229225</pqid></control><display><type>article</type><title>Eigenvalue monotonicity of q-Laplacians of trees along a poset</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nagar, Mukesh Kumar</creator><creatorcontrib>Nagar, Mukesh Kumar</creatorcontrib><description>Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decreases. We also prove that for all q∈R with |q|≥1, going up on GTSn increases the second smallest eigenvalue of LTq. These generalize known results for eigenvalues of the Laplacian matrix of trees. As a corollary, we obtain consequences about the eigenvalues of q,t-Laplacians and exponential distance matrices of trees.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.02.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>[formula omitted] poset ; Apexes ; Eigenvalues ; Exponential distance matrix ; Interlace ; Linear algebra ; q-Laplacian ; Tree ; Trees</subject><ispartof>Linear algebra and its applications, 2019-06, Vol.571, p.110-131</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-e5daec0299b28a8b28df8781ef02cb4abb2abfd47629050fb84409cfebacd7de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379519300801$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nagar, Mukesh Kumar</creatorcontrib><title>Eigenvalue monotonicity of q-Laplacians of trees along a poset</title><title>Linear algebra and its applications</title><description>Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decreases. We also prove that for all q∈R with |q|≥1, going up on GTSn increases the second smallest eigenvalue of LTq. These generalize known results for eigenvalues of the Laplacian matrix of trees. As a corollary, we obtain consequences about the eigenvalues of q,t-Laplacians and exponential distance matrices of trees.</description><subject>[formula omitted] poset</subject><subject>Apexes</subject><subject>Eigenvalues</subject><subject>Exponential distance matrix</subject><subject>Interlace</subject><subject>Linear algebra</subject><subject>q-Laplacian</subject><subject>Tree</subject><subject>Trees</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLeA58TZSdJsEAQprQoFL3peNpvZsiHNprtpof_eLfXs5Q0D7808PsYeOWQc-OK5y3qlMgReZ4AZcHHFZlxUecpFubhmMwAs0ryqy1t2F0IHAEUFOGOvK7ul4aj6AyU7N7jJDVbb6ZQ4k-zTjRp7pa0awnmfPFFIVO-GbaKS0QWa7tmNUX2gh785Zz_r1ffyI918vX8u3zapzhGmlMpWkQas6waFElFaIyrByQDqplBNg6oxbVEtsIYSTCOKAmptqFG6rVrK5-zpcnf0bn-gMMnOHfwQX0pELBHrqNHFLy7tXQiejBy93Sl_khzkGZPsZMQkz5gkoIyYYublkqFY_2jJy6AtDZpa60lPsnX2n_Qvd7pwQw</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Nagar, Mukesh Kumar</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190615</creationdate><title>Eigenvalue monotonicity of q-Laplacians of trees along a poset</title><author>Nagar, Mukesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-e5daec0299b28a8b28df8781ef02cb4abb2abfd47629050fb84409cfebacd7de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[formula omitted] poset</topic><topic>Apexes</topic><topic>Eigenvalues</topic><topic>Exponential distance matrix</topic><topic>Interlace</topic><topic>Linear algebra</topic><topic>q-Laplacian</topic><topic>Tree</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagar, Mukesh Kumar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagar, Mukesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue monotonicity of q-Laplacians of trees along a poset</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>571</volume><spage>110</spage><epage>131</epage><pages>110-131</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decreases. We also prove that for all q∈R with |q|≥1, going up on GTSn increases the second smallest eigenvalue of LTq. These generalize known results for eigenvalues of the Laplacian matrix of trees. As a corollary, we obtain consequences about the eigenvalues of q,t-Laplacians and exponential distance matrices of trees.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.02.018</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2019-06, Vol.571, p.110-131
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2225229225
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects [formula omitted] poset
Apexes
Eigenvalues
Exponential distance matrix
Interlace
Linear algebra
q-Laplacian
Tree
Trees
title Eigenvalue monotonicity of q-Laplacians of trees along a poset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20monotonicity%20of%20q-Laplacians%20of%20trees%20along%20a%20poset&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Nagar,%20Mukesh%20Kumar&rft.date=2019-06-15&rft.volume=571&rft.spage=110&rft.epage=131&rft.pages=110-131&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.02.018&rft_dat=%3Cproquest_cross%3E2225229225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225229225&rft_id=info:pmid/&rft_els_id=S0024379519300801&rfr_iscdi=true