Eigenvalue monotonicity of q-Laplacians of trees along a poset
Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decr...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-06, Vol.571, p.110-131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decreases. We also prove that for all q∈R with |q|≥1, going up on GTSn increases the second smallest eigenvalue of LTq. These generalize known results for eigenvalues of the Laplacian matrix of trees. As a corollary, we obtain consequences about the eigenvalues of q,t-Laplacians and exponential distance matrices of trees. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.02.018 |