Eigenvalue monotonicity of q-Laplacians of trees along a poset

Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-06, Vol.571, p.110-131
1. Verfasser: Nagar, Mukesh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T be a tree on n vertices with q-Laplacian matrix LTq. Let GTSn be the generalized tree shift poset on the set of unlabelled trees with n vertices. We prove that for all q∈R, going up on GTSn has the following effect: the spectral radius of LTq increases while the smallest eigenvalue of LTq decreases. We also prove that for all q∈R with |q|≥1, going up on GTSn increases the second smallest eigenvalue of LTq. These generalize known results for eigenvalues of the Laplacian matrix of trees. As a corollary, we obtain consequences about the eigenvalues of q,t-Laplacians and exponential distance matrices of trees.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2019.02.018