Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains

Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2019-04, Vol.35 (2), p.319-326
Hauptverfasser: Chen, Hua-mei, Liu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 2
container_start_page 319
container_title Acta Mathematicae Applicatae Sinica
container_volume 35
creator Chen, Hua-mei
Liu, Yan
description Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported the progress on matching energy of graphs without pendent vertices. For a random six-membered ring spiro chain, the number of k -matchings and the matching energy are random variables. In this paper, we determine the extremal graphs with respect to the matching energy for random six-membered ring spiro chains which have no pendent vertices.
doi_str_mv 10.1007/s10255-019-0820-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225209935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225209935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a771ed705bdfbdbcccf3ffdc75270993403dc48168231877fb20cf4c4b6e93323</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAc_RL0jbtUcacwkTY9OAppGmydqxNTTrc9uttqeDJ03d53vf9eBC6pXBPAcRDoMDimADNCKQMyOkMTWhCU8Izzs7RBGiSkiwR_BJdhbAFoIInYoI-54fOm1rt8MKrtgz4u-pKvDKhNbrDncOvqtNl1WzwvDF-c8TWebxSTeFqvK4OpDZ1brwp8Gpg1m3lHZ6VqmrCNbqwahfMze-doo-n-fvsmSzfFi-zxyXRnCYdUUJQUwiI88LmRa61ttzaQouYCcgyHgEvdJT27zNOUyFszkDbSEd5YjLOGZ-iu7G39e5rb0Int27vm35SMsZiNpTEPUVHSnsXgjdWtr6qlT9KCnIwKEeDsjcoB4Py1GfYmAk922yM_2v-P_QDlCVz-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225209935</pqid></control><display><type>article</type><title>Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Hua-mei ; Liu, Yan</creator><creatorcontrib>Chen, Hua-mei ; Liu, Yan</creatorcontrib><description>Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported the progress on matching energy of graphs without pendent vertices. For a random six-membered ring spiro chain, the number of k -matchings and the matching energy are random variables. In this paper, we determine the extremal graphs with respect to the matching energy for random six-membered ring spiro chains which have no pendent vertices.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-019-0820-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Applications of Mathematics ; Chains ; Energy ; Graph matching ; Graphs ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Organic chemistry ; Random variables ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2019-04, Vol.35 (2), p.319-326</ispartof><rights>The Editorial Office of AMAS &amp; Springer-Verlag GmbH Germany 2019 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a771ed705bdfbdbcccf3ffdc75270993403dc48168231877fb20cf4c4b6e93323</citedby><cites>FETCH-LOGICAL-c316t-a771ed705bdfbdbcccf3ffdc75270993403dc48168231877fb20cf4c4b6e93323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-019-0820-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-019-0820-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Hua-mei</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><title>Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><description>Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported the progress on matching energy of graphs without pendent vertices. For a random six-membered ring spiro chain, the number of k -matchings and the matching energy are random variables. In this paper, we determine the extremal graphs with respect to the matching energy for random six-membered ring spiro chains which have no pendent vertices.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Chains</subject><subject>Energy</subject><subject>Graph matching</subject><subject>Graphs</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Organic chemistry</subject><subject>Random variables</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKc_wFvAc_RL0jbtUcacwkTY9OAppGmydqxNTTrc9uttqeDJ03d53vf9eBC6pXBPAcRDoMDimADNCKQMyOkMTWhCU8Izzs7RBGiSkiwR_BJdhbAFoIInYoI-54fOm1rt8MKrtgz4u-pKvDKhNbrDncOvqtNl1WzwvDF-c8TWebxSTeFqvK4OpDZ1brwp8Gpg1m3lHZ6VqmrCNbqwahfMze-doo-n-fvsmSzfFi-zxyXRnCYdUUJQUwiI88LmRa61ttzaQouYCcgyHgEvdJT27zNOUyFszkDbSEd5YjLOGZ-iu7G39e5rb0Int27vm35SMsZiNpTEPUVHSnsXgjdWtr6qlT9KCnIwKEeDsjcoB4Py1GfYmAk922yM_2v-P_QDlCVz-g</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chen, Hua-mei</creator><creator>Liu, Yan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains</title><author>Chen, Hua-mei ; Liu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a771ed705bdfbdbcccf3ffdc75270993403dc48168231877fb20cf4c4b6e93323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Chains</topic><topic>Energy</topic><topic>Graph matching</topic><topic>Graphs</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Organic chemistry</topic><topic>Random variables</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hua-mei</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hua-mei</au><au>Liu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>35</volume><issue>2</issue><spage>319</spage><epage>326</epage><pages>319-326</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported the progress on matching energy of graphs without pendent vertices. For a random six-membered ring spiro chain, the number of k -matchings and the matching energy are random variables. In this paper, we determine the extremal graphs with respect to the matching energy for random six-membered ring spiro chains which have no pendent vertices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-019-0820-z</doi><tpages>8</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2019-04, Vol.35 (2), p.319-326
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2225209935
source SpringerNature Journals; Alma/SFX Local Collection
subjects Apexes
Applications of Mathematics
Chains
Energy
Graph matching
Graphs
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Organic chemistry
Random variables
Theoretical
title Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20Graphs%20with%20Respect%20to%20Matching%20Energy%20for%20Random%20Six-membered%20Ring%20Spiro%20Chains&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Chen,%20Hua-mei&rft.date=2019-04-01&rft.volume=35&rft.issue=2&rft.spage=319&rft.epage=326&rft.pages=319-326&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-019-0820-z&rft_dat=%3Cproquest_cross%3E2225209935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225209935&rft_id=info:pmid/&rfr_iscdi=true