Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains

Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2019-04, Vol.35 (2), p.319-326
Hauptverfasser: Chen, Hua-mei, Liu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported the progress on matching energy of graphs without pendent vertices. For a random six-membered ring spiro chain, the number of k -matchings and the matching energy are random variables. In this paper, we determine the extremal graphs with respect to the matching energy for random six-membered ring spiro chains which have no pendent vertices.
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-019-0820-z