Extremal Graphs with Respect to Matching Energy for Random Six-membered Ring Spiro Chains
Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2019-04, Vol.35 (2), p.319-326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gutman and Wagner (in the matching energy of a graph, Disc. Appl. Math., 2012) defined the matching energy of a graph and pointed out that its chemical applications go back to the 1970s. Now the research on matching energy mainly focuses on graphs with pendent vertices and only a few papers reported the progress on matching energy of graphs without pendent vertices. For a random six-membered ring spiro chain, the number of
k
-matchings and the matching energy are random variables. In this paper, we determine the extremal graphs with respect to the matching energy for random six-membered ring spiro chains which have no pendent vertices. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-019-0820-z |