Pedagogy of chi‐square goodness of fit test for continuous distributions
Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering...
Gespeichert in:
Veröffentlicht in: | Computer applications in engineering education 2019-05, Vol.27 (3), p.679-689 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 689 |
---|---|
container_issue | 3 |
container_start_page | 679 |
container_title | Computer applications in engineering education |
container_volume | 27 |
creator | Shankar, P. Mohana |
description | Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the
P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics. |
doi_str_mv | 10.1002/cae.22107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225109305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225109305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</originalsourceid><addsrcrecordid>eNp1kL1OwzAQgC0EEqUw8AaWmBjSnu0kjseqKgVUCQaYLdc_xVWJWzsR6sYj8Iw8CQlhZbqT7ru_D6FrAhMCQKda2QmlBPgJGhEQIoMip6d9XpKMcc7O0UVKWwAQJRMj9PhsjdqEzREHh_Wb__78SodWRYs3IZjaptQXnG9wY1ODXYhYh7rxdRvahI1PTfTrtvGhTpfozKldsld_cYxe7xYv8_ts9bR8mM9WmaaC84wSosAaYzhZM-A8zznTznKWO-1AVIVmLBdABRCmwEBZUFdWhFRVTpyyBRujm2HuPoZD210lt6GNdbdSUkqL7msGPXU7UDqGlKJ1ch_9u4pHSUD2qmSnSv6q6tjpwH74nT3-D8r5bDF0_AAP-2of</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225109305</pqid></control><display><type>article</type><title>Pedagogy of chi‐square goodness of fit test for continuous distributions</title><source>Access via Wiley Online Library</source><creator>Shankar, P. Mohana</creator><creatorcontrib>Shankar, P. Mohana</creatorcontrib><description>Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the
P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.</description><identifier>ISSN: 1061-3773</identifier><identifier>EISSN: 1099-0542</identifier><identifier>DOI: 10.1002/cae.22107</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chi-square test ; Goodness of fit ; goodness of fit test ; Matlab ; Parameter estimation ; pedagogy ; Permutations ; Statistical analysis ; Statistical tests ; test statistic ; Textbooks ; undergraduate engineering statistics</subject><ispartof>Computer applications in engineering education, 2019-05, Vol.27 (3), p.679-689</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</citedby><cites>FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</cites><orcidid>0000-0002-9719-9700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcae.22107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcae.22107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shankar, P. Mohana</creatorcontrib><title>Pedagogy of chi‐square goodness of fit test for continuous distributions</title><title>Computer applications in engineering education</title><description>Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the
P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.</description><subject>Chi-square test</subject><subject>Goodness of fit</subject><subject>goodness of fit test</subject><subject>Matlab</subject><subject>Parameter estimation</subject><subject>pedagogy</subject><subject>Permutations</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>test statistic</subject><subject>Textbooks</subject><subject>undergraduate engineering statistics</subject><issn>1061-3773</issn><issn>1099-0542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAQgC0EEqUw8AaWmBjSnu0kjseqKgVUCQaYLdc_xVWJWzsR6sYj8Iw8CQlhZbqT7ru_D6FrAhMCQKda2QmlBPgJGhEQIoMip6d9XpKMcc7O0UVKWwAQJRMj9PhsjdqEzREHh_Wb__78SodWRYs3IZjaptQXnG9wY1ODXYhYh7rxdRvahI1PTfTrtvGhTpfozKldsld_cYxe7xYv8_ts9bR8mM9WmaaC84wSosAaYzhZM-A8zznTznKWO-1AVIVmLBdABRCmwEBZUFdWhFRVTpyyBRujm2HuPoZD210lt6GNdbdSUkqL7msGPXU7UDqGlKJ1ch_9u4pHSUD2qmSnSv6q6tjpwH74nT3-D8r5bDF0_AAP-2of</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Shankar, P. Mohana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9719-9700</orcidid></search><sort><creationdate>201905</creationdate><title>Pedagogy of chi‐square goodness of fit test for continuous distributions</title><author>Shankar, P. Mohana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chi-square test</topic><topic>Goodness of fit</topic><topic>goodness of fit test</topic><topic>Matlab</topic><topic>Parameter estimation</topic><topic>pedagogy</topic><topic>Permutations</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>test statistic</topic><topic>Textbooks</topic><topic>undergraduate engineering statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, P. Mohana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer applications in engineering education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, P. Mohana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedagogy of chi‐square goodness of fit test for continuous distributions</atitle><jtitle>Computer applications in engineering education</jtitle><date>2019-05</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>679</spage><epage>689</epage><pages>679-689</pages><issn>1061-3773</issn><eissn>1099-0542</eissn><abstract>Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the
P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cae.22107</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9719-9700</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-3773 |
ispartof | Computer applications in engineering education, 2019-05, Vol.27 (3), p.679-689 |
issn | 1061-3773 1099-0542 |
language | eng |
recordid | cdi_proquest_journals_2225109305 |
source | Access via Wiley Online Library |
subjects | Chi-square test Goodness of fit goodness of fit test Matlab Parameter estimation pedagogy Permutations Statistical analysis Statistical tests test statistic Textbooks undergraduate engineering statistics |
title | Pedagogy of chi‐square goodness of fit test for continuous distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedagogy%20of%20chi%E2%80%90square%20goodness%20of%20fit%20test%20for%20continuous%20distributions&rft.jtitle=Computer%20applications%20in%20engineering%20education&rft.au=Shankar,%20P.%20Mohana&rft.date=2019-05&rft.volume=27&rft.issue=3&rft.spage=679&rft.epage=689&rft.pages=679-689&rft.issn=1061-3773&rft.eissn=1099-0542&rft_id=info:doi/10.1002/cae.22107&rft_dat=%3Cproquest_cross%3E2225109305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225109305&rft_id=info:pmid/&rfr_iscdi=true |