Pedagogy of chi‐square goodness of fit test for continuous distributions

Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer applications in engineering education 2019-05, Vol.27 (3), p.679-689
1. Verfasser: Shankar, P. Mohana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 3
container_start_page 679
container_title Computer applications in engineering education
container_volume 27
creator Shankar, P. Mohana
description Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.
doi_str_mv 10.1002/cae.22107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225109305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225109305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</originalsourceid><addsrcrecordid>eNp1kL1OwzAQgC0EEqUw8AaWmBjSnu0kjseqKgVUCQaYLdc_xVWJWzsR6sYj8Iw8CQlhZbqT7ru_D6FrAhMCQKda2QmlBPgJGhEQIoMip6d9XpKMcc7O0UVKWwAQJRMj9PhsjdqEzREHh_Wb__78SodWRYs3IZjaptQXnG9wY1ODXYhYh7rxdRvahI1PTfTrtvGhTpfozKldsld_cYxe7xYv8_ts9bR8mM9WmaaC84wSosAaYzhZM-A8zznTznKWO-1AVIVmLBdABRCmwEBZUFdWhFRVTpyyBRujm2HuPoZD210lt6GNdbdSUkqL7msGPXU7UDqGlKJ1ch_9u4pHSUD2qmSnSv6q6tjpwH74nT3-D8r5bDF0_AAP-2of</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225109305</pqid></control><display><type>article</type><title>Pedagogy of chi‐square goodness of fit test for continuous distributions</title><source>Access via Wiley Online Library</source><creator>Shankar, P. Mohana</creator><creatorcontrib>Shankar, P. Mohana</creatorcontrib><description>Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.</description><identifier>ISSN: 1061-3773</identifier><identifier>EISSN: 1099-0542</identifier><identifier>DOI: 10.1002/cae.22107</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chi-square test ; Goodness of fit ; goodness of fit test ; Matlab ; Parameter estimation ; pedagogy ; Permutations ; Statistical analysis ; Statistical tests ; test statistic ; Textbooks ; undergraduate engineering statistics</subject><ispartof>Computer applications in engineering education, 2019-05, Vol.27 (3), p.679-689</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</citedby><cites>FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</cites><orcidid>0000-0002-9719-9700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcae.22107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcae.22107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shankar, P. Mohana</creatorcontrib><title>Pedagogy of chi‐square goodness of fit test for continuous distributions</title><title>Computer applications in engineering education</title><description>Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.</description><subject>Chi-square test</subject><subject>Goodness of fit</subject><subject>goodness of fit test</subject><subject>Matlab</subject><subject>Parameter estimation</subject><subject>pedagogy</subject><subject>Permutations</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>test statistic</subject><subject>Textbooks</subject><subject>undergraduate engineering statistics</subject><issn>1061-3773</issn><issn>1099-0542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAQgC0EEqUw8AaWmBjSnu0kjseqKgVUCQaYLdc_xVWJWzsR6sYj8Iw8CQlhZbqT7ru_D6FrAhMCQKda2QmlBPgJGhEQIoMip6d9XpKMcc7O0UVKWwAQJRMj9PhsjdqEzREHh_Wb__78SodWRYs3IZjaptQXnG9wY1ODXYhYh7rxdRvahI1PTfTrtvGhTpfozKldsld_cYxe7xYv8_ts9bR8mM9WmaaC84wSosAaYzhZM-A8zznTznKWO-1AVIVmLBdABRCmwEBZUFdWhFRVTpyyBRujm2HuPoZD210lt6GNdbdSUkqL7msGPXU7UDqGlKJ1ch_9u4pHSUD2qmSnSv6q6tjpwH74nT3-D8r5bDF0_AAP-2of</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Shankar, P. Mohana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9719-9700</orcidid></search><sort><creationdate>201905</creationdate><title>Pedagogy of chi‐square goodness of fit test for continuous distributions</title><author>Shankar, P. Mohana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-211a0eddd71b30774473cfe734fcf0985c3349029013a0d0652f68118841fae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chi-square test</topic><topic>Goodness of fit</topic><topic>goodness of fit test</topic><topic>Matlab</topic><topic>Parameter estimation</topic><topic>pedagogy</topic><topic>Permutations</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>test statistic</topic><topic>Textbooks</topic><topic>undergraduate engineering statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, P. Mohana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer applications in engineering education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, P. Mohana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedagogy of chi‐square goodness of fit test for continuous distributions</atitle><jtitle>Computer applications in engineering education</jtitle><date>2019-05</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>679</spage><epage>689</epage><pages>679-689</pages><issn>1061-3773</issn><eissn>1099-0542</eissn><abstract>Chi‐square goodness of fit testing to examine whether or not it is reasonable to assume that a random sample of the data comes from a specific probability density was one of the topics covered in an undergraduate engineering probability course. In the absence of details on this topic in engineering probability books, a Matlab® demo was created to facilitate the link between theory and practice. The step‐by‐step procedure to determine the closest fit among a number of continuous densities has been demonstrated involving binning (fixed width and fixed population), parameter estimation, and computation of the test statistic, degrees of freedom and the P values. The cautionary aspects of the test regarding the variability in test results have been illustrated by choosing a smaller size data through permutation. The pedagogical aspects of procedure demonstrated suggest that it may be used to fill the gaps in textbooks devoted to probability and statistics.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cae.22107</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9719-9700</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-3773
ispartof Computer applications in engineering education, 2019-05, Vol.27 (3), p.679-689
issn 1061-3773
1099-0542
language eng
recordid cdi_proquest_journals_2225109305
source Access via Wiley Online Library
subjects Chi-square test
Goodness of fit
goodness of fit test
Matlab
Parameter estimation
pedagogy
Permutations
Statistical analysis
Statistical tests
test statistic
Textbooks
undergraduate engineering statistics
title Pedagogy of chi‐square goodness of fit test for continuous distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedagogy%20of%20chi%E2%80%90square%20goodness%20of%20fit%20test%20for%20continuous%20distributions&rft.jtitle=Computer%20applications%20in%20engineering%20education&rft.au=Shankar,%20P.%20Mohana&rft.date=2019-05&rft.volume=27&rft.issue=3&rft.spage=679&rft.epage=689&rft.pages=679-689&rft.issn=1061-3773&rft.eissn=1099-0542&rft_id=info:doi/10.1002/cae.22107&rft_dat=%3Cproquest_cross%3E2225109305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225109305&rft_id=info:pmid/&rfr_iscdi=true