Richardson extrapolation based on superconvergent Nyström and degenerate kernel methods
For computing the approximated solution of a second kind integral equation with a smooth kernel, we investigate in this paper the Richardson extrapolation using superconvergent Nyström and degenerate kernel methods based on interpolatory projection onto the space of (discontinuous) piecewise polynom...
Gespeichert in:
Veröffentlicht in: | Afrika mathematica 2019-06, Vol.30 (3-4), p.469-482 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For computing the approximated solution of a second kind integral equation with a smooth kernel, we investigate in this paper the Richardson extrapolation using superconvergent Nyström and degenerate kernel methods based on interpolatory projection onto the space of (discontinuous) piecewise polynomials of degree
≤
r
-
1
.
We obtain asymptotic series expansions for the approximate solutions and we show that the order of convergence 4
r
in the interpolation at Gauss points can be improved to
4
r
+
2
. We illustrate the improvement of the order of convergence by numerical experiments. |
---|---|
ISSN: | 1012-9405 2190-7668 |
DOI: | 10.1007/s13370-019-00660-9 |