Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid

Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-06, Vol.41 (6), p.1-13, Article 249
Hauptverfasser: Dogonchi, A. S., Waqas, M., Seyyedi, Seyyed Masoud, Hashemi-Tilehnoee, M., Ganji, D. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 1
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 41
creator Dogonchi, A. S.
Waqas, M.
Seyyedi, Seyyed Masoud
Hashemi-Tilehnoee, M.
Ganji, D. D.
description Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Recent researches regarding nanoliquids have been elaborated to exhibit anomalously higher convection heat transportation. Keeping such implications in mind, we formulated CuO-H 2 O nanoliquid flow with wavy circular cylinder as heater subjected to magnetohydrodynamics. The well-known Darcy model featuring porous medium along with KKL (Koo–Kleinstreuer–Li) model is considered simultaneously for analysis. Heat transportation is reported considering radiation effect. The impact of shape factor of nanoparticles is also considered. Simulations are presented employing the novel control volume finite element method. The influences of notable parameters like Darcy number, Rayleigh and Hartmann numbers, radiation parameter, amplitude of undulations, nanofluid volume fraction and shape factor of nanoparticles have been investigated on flow and heat transfer features. Moreover, a novel correlation regarding average Nusselt number has been developed subject to analysis’s active parameters. Our outcomes report that lower values of amplitude of undulations provide the uppermost estimations of average Nusselt number.
doi_str_mv 10.1007/s40430-019-1752-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2224404822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224404822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bc6262e7d296553220075369d7e0afc70dae4dfc49d47fa4012dd6ee67ee501b3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTTJ5DGzlKJWKHaj65DmYVNmJjWZIP57IyO4cnUvl3PO5XwAXBN8SzCWd5lh1mCESYeI5BTxE7AgLRaoER05rbuQLeKtbM_BRc4HjBvKBV-A8FIGl4LRPcxhKL2eQhyhjwlOe5eGek7ahvmqRwuPMcWS4eBsKAM0e520mWpAnoLJMFRrHz9h9HBVtmhNt3DUY_R9CfYSnHndZ3f1O5fg7fHhdbVGm-3T8-p-g0xDxIR2RlBBnbS0E5w3lNZ2vJaw0mHtjcRWO2a9YZ1l0muGCbVWOCekcxyTXbMEN3PuMcWP4vKkDrGksb5UlFJWObWUVhWZVSbFnJPz6pjCoNOXIlj9EFUzUVWJqh-iilcPnT25asd3l_6S_zd9A7ykecs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224404822</pqid></control><display><type>article</type><title>Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dogonchi, A. S. ; Waqas, M. ; Seyyedi, Seyyed Masoud ; Hashemi-Tilehnoee, M. ; Ganji, D. D.</creator><creatorcontrib>Dogonchi, A. S. ; Waqas, M. ; Seyyedi, Seyyed Masoud ; Hashemi-Tilehnoee, M. ; Ganji, D. D.</creatorcontrib><description>Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Recent researches regarding nanoliquids have been elaborated to exhibit anomalously higher convection heat transportation. Keeping such implications in mind, we formulated CuO-H 2 O nanoliquid flow with wavy circular cylinder as heater subjected to magnetohydrodynamics. The well-known Darcy model featuring porous medium along with KKL (Koo–Kleinstreuer–Li) model is considered simultaneously for analysis. Heat transportation is reported considering radiation effect. The impact of shape factor of nanoparticles is also considered. Simulations are presented employing the novel control volume finite element method. The influences of notable parameters like Darcy number, Rayleigh and Hartmann numbers, radiation parameter, amplitude of undulations, nanofluid volume fraction and shape factor of nanoparticles have been investigated on flow and heat transfer features. Moreover, a novel correlation regarding average Nusselt number has been developed subject to analysis’s active parameters. Our outcomes report that lower values of amplitude of undulations provide the uppermost estimations of average Nusselt number.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-019-1752-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplitudes ; Circular cylinders ; Computational fluid dynamics ; Computer simulation ; Darcy number ; Engineering ; Finite element method ; Fluid flow ; Heat ; Heat transfer ; Magnetohydrodynamics ; Mathematical models ; Mechanical Engineering ; Nanofluids ; Nanoparticles ; Nusselt number ; Parameters ; Porous media ; Shape effects ; Shape factor ; Technical Paper ; Thermal radiation ; Thermal simulation ; Transportation ; Viscosity</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-06, Vol.41 (6), p.1-13, Article 249</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bc6262e7d296553220075369d7e0afc70dae4dfc49d47fa4012dd6ee67ee501b3</citedby><cites>FETCH-LOGICAL-c316t-bc6262e7d296553220075369d7e0afc70dae4dfc49d47fa4012dd6ee67ee501b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-019-1752-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-019-1752-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Dogonchi, A. S.</creatorcontrib><creatorcontrib>Waqas, M.</creatorcontrib><creatorcontrib>Seyyedi, Seyyed Masoud</creatorcontrib><creatorcontrib>Hashemi-Tilehnoee, M.</creatorcontrib><creatorcontrib>Ganji, D. D.</creatorcontrib><title>Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Recent researches regarding nanoliquids have been elaborated to exhibit anomalously higher convection heat transportation. Keeping such implications in mind, we formulated CuO-H 2 O nanoliquid flow with wavy circular cylinder as heater subjected to magnetohydrodynamics. The well-known Darcy model featuring porous medium along with KKL (Koo–Kleinstreuer–Li) model is considered simultaneously for analysis. Heat transportation is reported considering radiation effect. The impact of shape factor of nanoparticles is also considered. Simulations are presented employing the novel control volume finite element method. The influences of notable parameters like Darcy number, Rayleigh and Hartmann numbers, radiation parameter, amplitude of undulations, nanofluid volume fraction and shape factor of nanoparticles have been investigated on flow and heat transfer features. Moreover, a novel correlation regarding average Nusselt number has been developed subject to analysis’s active parameters. Our outcomes report that lower values of amplitude of undulations provide the uppermost estimations of average Nusselt number.</description><subject>Amplitudes</subject><subject>Circular cylinders</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Darcy number</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nusselt number</subject><subject>Parameters</subject><subject>Porous media</subject><subject>Shape effects</subject><subject>Shape factor</subject><subject>Technical Paper</subject><subject>Thermal radiation</subject><subject>Thermal simulation</subject><subject>Transportation</subject><subject>Viscosity</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTTJ5DGzlKJWKHaj65DmYVNmJjWZIP57IyO4cnUvl3PO5XwAXBN8SzCWd5lh1mCESYeI5BTxE7AgLRaoER05rbuQLeKtbM_BRc4HjBvKBV-A8FIGl4LRPcxhKL2eQhyhjwlOe5eGek7ahvmqRwuPMcWS4eBsKAM0e520mWpAnoLJMFRrHz9h9HBVtmhNt3DUY_R9CfYSnHndZ3f1O5fg7fHhdbVGm-3T8-p-g0xDxIR2RlBBnbS0E5w3lNZ2vJaw0mHtjcRWO2a9YZ1l0muGCbVWOCekcxyTXbMEN3PuMcWP4vKkDrGksb5UlFJWObWUVhWZVSbFnJPz6pjCoNOXIlj9EFUzUVWJqh-iilcPnT25asd3l_6S_zd9A7ykecs</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Dogonchi, A. S.</creator><creator>Waqas, M.</creator><creator>Seyyedi, Seyyed Masoud</creator><creator>Hashemi-Tilehnoee, M.</creator><creator>Ganji, D. D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid</title><author>Dogonchi, A. S. ; Waqas, M. ; Seyyedi, Seyyed Masoud ; Hashemi-Tilehnoee, M. ; Ganji, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bc6262e7d296553220075369d7e0afc70dae4dfc49d47fa4012dd6ee67ee501b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Circular cylinders</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Darcy number</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nusselt number</topic><topic>Parameters</topic><topic>Porous media</topic><topic>Shape effects</topic><topic>Shape factor</topic><topic>Technical Paper</topic><topic>Thermal radiation</topic><topic>Thermal simulation</topic><topic>Transportation</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Dogonchi, A. S.</creatorcontrib><creatorcontrib>Waqas, M.</creatorcontrib><creatorcontrib>Seyyedi, Seyyed Masoud</creatorcontrib><creatorcontrib>Hashemi-Tilehnoee, M.</creatorcontrib><creatorcontrib>Ganji, D. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogonchi, A. S.</au><au>Waqas, M.</au><au>Seyyedi, Seyyed Masoud</au><au>Hashemi-Tilehnoee, M.</au><au>Ganji, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>41</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>249</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Recent researches regarding nanoliquids have been elaborated to exhibit anomalously higher convection heat transportation. Keeping such implications in mind, we formulated CuO-H 2 O nanoliquid flow with wavy circular cylinder as heater subjected to magnetohydrodynamics. The well-known Darcy model featuring porous medium along with KKL (Koo–Kleinstreuer–Li) model is considered simultaneously for analysis. Heat transportation is reported considering radiation effect. The impact of shape factor of nanoparticles is also considered. Simulations are presented employing the novel control volume finite element method. The influences of notable parameters like Darcy number, Rayleigh and Hartmann numbers, radiation parameter, amplitude of undulations, nanofluid volume fraction and shape factor of nanoparticles have been investigated on flow and heat transfer features. Moreover, a novel correlation regarding average Nusselt number has been developed subject to analysis’s active parameters. Our outcomes report that lower values of amplitude of undulations provide the uppermost estimations of average Nusselt number.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-019-1752-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-06, Vol.41 (6), p.1-13, Article 249
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2224404822
source SpringerLink Journals - AutoHoldings
subjects Amplitudes
Circular cylinders
Computational fluid dynamics
Computer simulation
Darcy number
Engineering
Finite element method
Fluid flow
Heat
Heat transfer
Magnetohydrodynamics
Mathematical models
Mechanical Engineering
Nanofluids
Nanoparticles
Nusselt number
Parameters
Porous media
Shape effects
Shape factor
Technical Paper
Thermal radiation
Thermal simulation
Transportation
Viscosity
title Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20for%20thermal%20radiation%20and%20porous%20medium%20characteristics%20in%20flow%20of%20CuO-H2O%20nanofluid&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Dogonchi,%20A.%20S.&rft.date=2019-06-01&rft.volume=41&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=249&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-019-1752-5&rft_dat=%3Cproquest_cross%3E2224404822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224404822&rft_id=info:pmid/&rfr_iscdi=true