Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H2O nanofluid
Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Rec...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-06, Vol.41 (6), p.1-13, Article 249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Researchers have a wide-ranging tradition in endeavoring to rise the thermophysical aspects of convection heat transferors for illustration, transformer oil and water. Technological advancements in recent years permit the dispersal of elements having ranges between 10 and 100 nm in such liquids. Recent researches regarding nanoliquids have been elaborated to exhibit anomalously higher convection heat transportation. Keeping such implications in mind, we formulated CuO-H
2
O nanoliquid flow with wavy circular cylinder as heater subjected to magnetohydrodynamics. The well-known Darcy model featuring porous medium along with KKL (Koo–Kleinstreuer–Li) model is considered simultaneously for analysis. Heat transportation is reported considering radiation effect. The impact of shape factor of nanoparticles is also considered. Simulations are presented employing the novel control volume finite element method. The influences of notable parameters like Darcy number, Rayleigh and Hartmann numbers, radiation parameter, amplitude of undulations, nanofluid volume fraction and shape factor of nanoparticles have been investigated on flow and heat transfer features. Moreover, a novel correlation regarding average Nusselt number has been developed subject to analysis’s active parameters. Our outcomes report that lower values of amplitude of undulations provide the uppermost estimations of average Nusselt number. |
---|---|
ISSN: | 1678-5878 1806-3691 |
DOI: | 10.1007/s40430-019-1752-5 |