A [beta]-catenin gradient links the clock and wavefront systems in mouse embryo segmentation

Rhythmic production of vertebral precursors, the somites, causes bilateral columns of embryonic segments to form. This process involves a molecular oscillator--the segmentation clock--whose signal is translated into a spatial, periodic pattern by a complex signalling gradient system within the preso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2008-02, Vol.10 (2), p.186
Hauptverfasser: Aulehla, Alexander, Wiegraebe, Winfried, Baubet, Valerie, Wahl, Matthias B, Deng, Chuxia, Taketo, Makoto, Lewandoski, Mark, Pourquié, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rhythmic production of vertebral precursors, the somites, causes bilateral columns of embryonic segments to form. This process involves a molecular oscillator--the segmentation clock--whose signal is translated into a spatial, periodic pattern by a complex signalling gradient system within the presomitic mesoderm (PSM). In mouse embryos, Wnt signalling has been implicated in both the clock and gradient mechanisms, but how the Wnt pathway can perform these two functions simultaneously remains unclear. Here, we use a yellow fluorescent protein (YFP)-based, real-time imaging system in mouse embryos to demonstrate that clock oscillations are independent of beta-catenin protein levels. In contrast, we show that the Wnt-signalling gradient is established through a nuclear beta-catenin protein gradient in the posterior PSM. This gradient of nuclear beta-catenin defines the size of the oscillatory field and controls key aspects of PSM maturation and segment formation, emphasizing the central role of Wnt signalling in this process.
ISSN:1465-7392
1476-4679
DOI:10.1038/ncb1679