Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir

We present anomalous behavior of temperature-dependent photoluminescence (PL) measurements on InAs quantum dot ensembles coupled to an electron reservoir in an n−i−p diode structure. When negative gate voltages are applied to the sample, an anomalous initial increase of the integrated PL signal with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-04, Vol.99 (16), p.1, Article 165303
Hauptverfasser: Korsch, A. R., Nguyen, G. N., Schmidt, M., Ebler, C., Valentin, S. R., Lochner, P., Rothfuchs, C., Wieck, A. D., Ludwig, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 1
container_title Physical review. B
container_volume 99
creator Korsch, A. R.
Nguyen, G. N.
Schmidt, M.
Ebler, C.
Valentin, S. R.
Lochner, P.
Rothfuchs, C.
Wieck, A. D.
Ludwig, A.
description We present anomalous behavior of temperature-dependent photoluminescence (PL) measurements on InAs quantum dot ensembles coupled to an electron reservoir in an n−i−p diode structure. When negative gate voltages are applied to the sample, an anomalous initial increase of the integrated PL signal with rising temperature is observed for the ground-state and first-excited-state emission peaks. In contrast, measurements at positive gate voltages show no such anomaly and are well described by the commonly used Arrhenius model. Unlike previous studies on uncoupled quantum dot ensembles, we show that in quantum dot diode structures the anomalous temperature dependence and its dependence on the applied bias voltage is dominated by electrons tunneling from the electron reservoir to the quantum dots. Tunneling electrons enhance the PL signal by recombining with holes stored in the quantum dots and the tunneling rate depends on temperature via the Fermi distribution in the electron reservoir. With the implementation of a rate-based tunnel coupling, we develop a modified Arrhenius model that takes the observed anomalies excellently into account. Gate voltage dependent PL measurements at 77 K are further compared to capacitance-voltage spectroscopy measurements on the same sample, supporting the proposed interpretation. The PL peak width shows a characteristic evolution as a function of temperature, which is discussed qualitatively in terms of our model.
doi_str_mv 10.1103/PhysRevB.99.165303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222922233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222922233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e6dcf26379301d7620a548a80035d25bf7aa3ebce70994838951066e6ded3d573</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOOb-AZ8CPndemiVtHudwKgwUmc8ha64so226JB3sv7cy9eC47-G7-44fIfcM5owBf_zYn-Mnnp7mSs2ZFBz4FZnkC6kypaS6_tcCbsksxgMAMAmqADUhbottj8GkISA1naU7Z-IofGsah5G6jqY90n7vk2-G1nUYK-wqpL6mb90y0uNgujS01PoUaeWHvkFLk6eGrjG0jgaMGE7ehTtyU5sm4ux3TsnX-nm7es027y9vq-Umq_JCpAylrepc8kJxYLaQORixKE0JwIXNxa4ujOG4q3B8Xy1KXirBQMpxDS23ouBT8nC52wd_HDAmffBD6MZInY-lxuZ8dOUXVxV8jAFr3QfXmnDWDPQPVf1HVSulL1T5NzfybPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222922233</pqid></control><display><type>article</type><title>Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir</title><source>American Physical Society Journals</source><creator>Korsch, A. R. ; Nguyen, G. N. ; Schmidt, M. ; Ebler, C. ; Valentin, S. R. ; Lochner, P. ; Rothfuchs, C. ; Wieck, A. D. ; Ludwig, A.</creator><creatorcontrib>Korsch, A. R. ; Nguyen, G. N. ; Schmidt, M. ; Ebler, C. ; Valentin, S. R. ; Lochner, P. ; Rothfuchs, C. ; Wieck, A. D. ; Ludwig, A.</creatorcontrib><description>We present anomalous behavior of temperature-dependent photoluminescence (PL) measurements on InAs quantum dot ensembles coupled to an electron reservoir in an n−i−p diode structure. When negative gate voltages are applied to the sample, an anomalous initial increase of the integrated PL signal with rising temperature is observed for the ground-state and first-excited-state emission peaks. In contrast, measurements at positive gate voltages show no such anomaly and are well described by the commonly used Arrhenius model. Unlike previous studies on uncoupled quantum dot ensembles, we show that in quantum dot diode structures the anomalous temperature dependence and its dependence on the applied bias voltage is dominated by electrons tunneling from the electron reservoir to the quantum dots. Tunneling electrons enhance the PL signal by recombining with holes stored in the quantum dots and the tunneling rate depends on temperature via the Fermi distribution in the electron reservoir. With the implementation of a rate-based tunnel coupling, we develop a modified Arrhenius model that takes the observed anomalies excellently into account. Gate voltage dependent PL measurements at 77 K are further compared to capacitance-voltage spectroscopy measurements on the same sample, supporting the proposed interpretation. The PL peak width shows a characteristic evolution as a function of temperature, which is discussed qualitatively in terms of our model.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.165303</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anomalies ; Bias ; Electric potential ; Electron recombination ; Electrons ; Fermi-Dirac statistics ; Indium arsenides ; Photoluminescence ; Quantum dots ; Temperature ; Temperature dependence</subject><ispartof>Physical review. B, 2019-04, Vol.99 (16), p.1, Article 165303</ispartof><rights>Copyright American Physical Society Apr 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-e6dcf26379301d7620a548a80035d25bf7aa3ebce70994838951066e6ded3d573</citedby><cites>FETCH-LOGICAL-c275t-e6dcf26379301d7620a548a80035d25bf7aa3ebce70994838951066e6ded3d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Korsch, A. R.</creatorcontrib><creatorcontrib>Nguyen, G. N.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Ebler, C.</creatorcontrib><creatorcontrib>Valentin, S. R.</creatorcontrib><creatorcontrib>Lochner, P.</creatorcontrib><creatorcontrib>Rothfuchs, C.</creatorcontrib><creatorcontrib>Wieck, A. D.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><title>Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir</title><title>Physical review. B</title><description>We present anomalous behavior of temperature-dependent photoluminescence (PL) measurements on InAs quantum dot ensembles coupled to an electron reservoir in an n−i−p diode structure. When negative gate voltages are applied to the sample, an anomalous initial increase of the integrated PL signal with rising temperature is observed for the ground-state and first-excited-state emission peaks. In contrast, measurements at positive gate voltages show no such anomaly and are well described by the commonly used Arrhenius model. Unlike previous studies on uncoupled quantum dot ensembles, we show that in quantum dot diode structures the anomalous temperature dependence and its dependence on the applied bias voltage is dominated by electrons tunneling from the electron reservoir to the quantum dots. Tunneling electrons enhance the PL signal by recombining with holes stored in the quantum dots and the tunneling rate depends on temperature via the Fermi distribution in the electron reservoir. With the implementation of a rate-based tunnel coupling, we develop a modified Arrhenius model that takes the observed anomalies excellently into account. Gate voltage dependent PL measurements at 77 K are further compared to capacitance-voltage spectroscopy measurements on the same sample, supporting the proposed interpretation. The PL peak width shows a characteristic evolution as a function of temperature, which is discussed qualitatively in terms of our model.</description><subject>Anomalies</subject><subject>Bias</subject><subject>Electric potential</subject><subject>Electron recombination</subject><subject>Electrons</subject><subject>Fermi-Dirac statistics</subject><subject>Indium arsenides</subject><subject>Photoluminescence</subject><subject>Quantum dots</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOOb-AZ8CPndemiVtHudwKgwUmc8ha64so226JB3sv7cy9eC47-G7-44fIfcM5owBf_zYn-Mnnp7mSs2ZFBz4FZnkC6kypaS6_tcCbsksxgMAMAmqADUhbottj8GkISA1naU7Z-IofGsah5G6jqY90n7vk2-G1nUYK-wqpL6mb90y0uNgujS01PoUaeWHvkFLk6eGrjG0jgaMGE7ehTtyU5sm4ux3TsnX-nm7es027y9vq-Umq_JCpAylrepc8kJxYLaQORixKE0JwIXNxa4ujOG4q3B8Xy1KXirBQMpxDS23ouBT8nC52wd_HDAmffBD6MZInY-lxuZ8dOUXVxV8jAFr3QfXmnDWDPQPVf1HVSulL1T5NzfybPY</recordid><startdate>20190404</startdate><enddate>20190404</enddate><creator>Korsch, A. R.</creator><creator>Nguyen, G. N.</creator><creator>Schmidt, M.</creator><creator>Ebler, C.</creator><creator>Valentin, S. R.</creator><creator>Lochner, P.</creator><creator>Rothfuchs, C.</creator><creator>Wieck, A. D.</creator><creator>Ludwig, A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190404</creationdate><title>Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir</title><author>Korsch, A. R. ; Nguyen, G. N. ; Schmidt, M. ; Ebler, C. ; Valentin, S. R. ; Lochner, P. ; Rothfuchs, C. ; Wieck, A. D. ; Ludwig, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e6dcf26379301d7620a548a80035d25bf7aa3ebce70994838951066e6ded3d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomalies</topic><topic>Bias</topic><topic>Electric potential</topic><topic>Electron recombination</topic><topic>Electrons</topic><topic>Fermi-Dirac statistics</topic><topic>Indium arsenides</topic><topic>Photoluminescence</topic><topic>Quantum dots</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korsch, A. R.</creatorcontrib><creatorcontrib>Nguyen, G. N.</creatorcontrib><creatorcontrib>Schmidt, M.</creatorcontrib><creatorcontrib>Ebler, C.</creatorcontrib><creatorcontrib>Valentin, S. R.</creatorcontrib><creatorcontrib>Lochner, P.</creatorcontrib><creatorcontrib>Rothfuchs, C.</creatorcontrib><creatorcontrib>Wieck, A. D.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korsch, A. R.</au><au>Nguyen, G. N.</au><au>Schmidt, M.</au><au>Ebler, C.</au><au>Valentin, S. R.</au><au>Lochner, P.</au><au>Rothfuchs, C.</au><au>Wieck, A. D.</au><au>Ludwig, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir</atitle><jtitle>Physical review. B</jtitle><date>2019-04-04</date><risdate>2019</risdate><volume>99</volume><issue>16</issue><spage>1</spage><pages>1-</pages><artnum>165303</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present anomalous behavior of temperature-dependent photoluminescence (PL) measurements on InAs quantum dot ensembles coupled to an electron reservoir in an n−i−p diode structure. When negative gate voltages are applied to the sample, an anomalous initial increase of the integrated PL signal with rising temperature is observed for the ground-state and first-excited-state emission peaks. In contrast, measurements at positive gate voltages show no such anomaly and are well described by the commonly used Arrhenius model. Unlike previous studies on uncoupled quantum dot ensembles, we show that in quantum dot diode structures the anomalous temperature dependence and its dependence on the applied bias voltage is dominated by electrons tunneling from the electron reservoir to the quantum dots. Tunneling electrons enhance the PL signal by recombining with holes stored in the quantum dots and the tunneling rate depends on temperature via the Fermi distribution in the electron reservoir. With the implementation of a rate-based tunnel coupling, we develop a modified Arrhenius model that takes the observed anomalies excellently into account. Gate voltage dependent PL measurements at 77 K are further compared to capacitance-voltage spectroscopy measurements on the same sample, supporting the proposed interpretation. The PL peak width shows a characteristic evolution as a function of temperature, which is discussed qualitatively in terms of our model.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.165303</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-04, Vol.99 (16), p.1, Article 165303
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2222922233
source American Physical Society Journals
subjects Anomalies
Bias
Electric potential
Electron recombination
Electrons
Fermi-Dirac statistics
Indium arsenides
Photoluminescence
Quantum dots
Temperature
Temperature dependence
title Temperature and bias anomalies in the photoluminescence of InAs quantum dots coupled to a Fermi reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20and%20bias%20anomalies%20in%20the%20photoluminescence%20of%20InAs%20quantum%20dots%20coupled%20to%20a%20Fermi%20reservoir&rft.jtitle=Physical%20review.%20B&rft.au=Korsch,%20A.%20R.&rft.date=2019-04-04&rft.volume=99&rft.issue=16&rft.spage=1&rft.pages=1-&rft.artnum=165303&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.165303&rft_dat=%3Cproquest_cross%3E2222922233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222922233&rft_id=info:pmid/&rfr_iscdi=true