Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation
Summary Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences applicati...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2019-06, Vol.31 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 31 |
creator | Keller Tesser, Rafael Mello Schnorr, Lucas Legrand, Arnaud Heinrich, Franz Christian Dupros, Fabrice Navaux, Philippe O.A. |
description | Summary
Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences application dedicated to earthquake modeling. Our analysis reveals imbalance originating from the structure of the input data, and from low‐level CPU optimizations. Ondes3D was successfully ported to AMPI/CHARM++ using over‐decomposition and MPI process migration techniques to dynamically rebalance the load. However, this approach requires careful selection of the over‐decomposition level, the load balancing algorithm, and its activation frequency. These choices are usually tied to application structure and platform characteristics. In this article, we propose a workflow that leverages the capabilities of SimGrid to conduct such study at low experimental cost. We rely on a combination of emulation, simulation, and application modeling that requires minimal code modification and manages to capture both spatial and temporal load imbalance to faithfully predict the performance of dynamic load balancing. We evaluate the quality of our simulation by comparing simulation results with the outcome of real executions and demonstrate how this approach can be used to quickly find the optimal load balancing configuration for a given application/hardware configuration. |
doi_str_mv | 10.1002/cpe.5012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222537703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222537703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3852-34ed3b8cee3ada5096e2f3e53ca2dacb1017e4f97bcb6a8a50cb8cfeb63b388d3</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFKxV8BEG3LhJnUtz6VJKvUDBLnQ9nExO2ilJZpxJLN35CD6jT2LSijvP5pzFx3_gJ-SaswlnTNxph5OYcXFCRjyWImKJnJ7-3SI5JxchbBnjnEk-IrsV-tL6GhqNtLYFVqZZU1tSoGu0brMPRgcKzlVGQ2tsQ1tLQWus0EOL1H6g__78KlDb2tlgDsSBhxpb9LTtmiGv3XjbrTc0mLqrDjGX5KyEKuDV7x6Tt4fF6_wpWr48Ps_vl5GWWSwiOcVC5plGlFBAzGYJilJiLDWIAnTOGU9xWs7SXOcJZL3QvS4xT2Qus6yQY3JzzHXevncYWrW1nW_6l0r0E8s0ZbJXt0elvQ3BY6mcNzX4veJMDbWqvlY11NrT6Eh3psL9v07NV4uD_wHjbn3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222537703</pqid></control><display><type>article</type><title>Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Keller Tesser, Rafael ; Mello Schnorr, Lucas ; Legrand, Arnaud ; Heinrich, Franz Christian ; Dupros, Fabrice ; Navaux, Philippe O.A.</creator><creatorcontrib>Keller Tesser, Rafael ; Mello Schnorr, Lucas ; Legrand, Arnaud ; Heinrich, Franz Christian ; Dupros, Fabrice ; Navaux, Philippe O.A.</creatorcontrib><description>Summary
Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences application dedicated to earthquake modeling. Our analysis reveals imbalance originating from the structure of the input data, and from low‐level CPU optimizations. Ondes3D was successfully ported to AMPI/CHARM++ using over‐decomposition and MPI process migration techniques to dynamically rebalance the load. However, this approach requires careful selection of the over‐decomposition level, the load balancing algorithm, and its activation frequency. These choices are usually tied to application structure and platform characteristics. In this article, we propose a workflow that leverages the capabilities of SimGrid to conduct such study at low experimental cost. We rely on a combination of emulation, simulation, and application modeling that requires minimal code modification and manages to capture both spatial and temporal load imbalance to faithfully predict the performance of dynamic load balancing. We evaluate the quality of our simulation by comparing simulation results with the outcome of real executions and demonstrate how this approach can be used to quickly find the optimal load balancing configuration for a given application/hardware configuration.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5012</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Computer simulation ; computer system simulation ; Configurations ; Decomposition ; Dynamic loads ; Earthquake damage ; Geophysics ; geophysics FDM application ; high‐performance computing ; Load balancing ; load balancing and over‐decomposition ; Modelling ; performance prediction ; Process migration ; Workflow</subject><ispartof>Concurrency and computation, 2019-06, Vol.31 (11), p.n/a</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3852-34ed3b8cee3ada5096e2f3e53ca2dacb1017e4f97bcb6a8a50cb8cfeb63b388d3</citedby><cites>FETCH-LOGICAL-c3852-34ed3b8cee3ada5096e2f3e53ca2dacb1017e4f97bcb6a8a50cb8cfeb63b388d3</cites><orcidid>0000-0003-4828-9942 ; 0000-0002-8415-1046 ; 0000-0001-5733-4982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Keller Tesser, Rafael</creatorcontrib><creatorcontrib>Mello Schnorr, Lucas</creatorcontrib><creatorcontrib>Legrand, Arnaud</creatorcontrib><creatorcontrib>Heinrich, Franz Christian</creatorcontrib><creatorcontrib>Dupros, Fabrice</creatorcontrib><creatorcontrib>Navaux, Philippe O.A.</creatorcontrib><title>Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation</title><title>Concurrency and computation</title><description>Summary
Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences application dedicated to earthquake modeling. Our analysis reveals imbalance originating from the structure of the input data, and from low‐level CPU optimizations. Ondes3D was successfully ported to AMPI/CHARM++ using over‐decomposition and MPI process migration techniques to dynamically rebalance the load. However, this approach requires careful selection of the over‐decomposition level, the load balancing algorithm, and its activation frequency. These choices are usually tied to application structure and platform characteristics. In this article, we propose a workflow that leverages the capabilities of SimGrid to conduct such study at low experimental cost. We rely on a combination of emulation, simulation, and application modeling that requires minimal code modification and manages to capture both spatial and temporal load imbalance to faithfully predict the performance of dynamic load balancing. We evaluate the quality of our simulation by comparing simulation results with the outcome of real executions and demonstrate how this approach can be used to quickly find the optimal load balancing configuration for a given application/hardware configuration.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>computer system simulation</subject><subject>Configurations</subject><subject>Decomposition</subject><subject>Dynamic loads</subject><subject>Earthquake damage</subject><subject>Geophysics</subject><subject>geophysics FDM application</subject><subject>high‐performance computing</subject><subject>Load balancing</subject><subject>load balancing and over‐decomposition</subject><subject>Modelling</subject><subject>performance prediction</subject><subject>Process migration</subject><subject>Workflow</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AUBuBBFKxV8BEG3LhJnUtz6VJKvUDBLnQ9nExO2ilJZpxJLN35CD6jT2LSijvP5pzFx3_gJ-SaswlnTNxph5OYcXFCRjyWImKJnJ7-3SI5JxchbBnjnEk-IrsV-tL6GhqNtLYFVqZZU1tSoGu0brMPRgcKzlVGQ2tsQ1tLQWus0EOL1H6g__78KlDb2tlgDsSBhxpb9LTtmiGv3XjbrTc0mLqrDjGX5KyEKuDV7x6Tt4fF6_wpWr48Ps_vl5GWWSwiOcVC5plGlFBAzGYJilJiLDWIAnTOGU9xWs7SXOcJZL3QvS4xT2Qus6yQY3JzzHXevncYWrW1nW_6l0r0E8s0ZbJXt0elvQ3BY6mcNzX4veJMDbWqvlY11NrT6Eh3psL9v07NV4uD_wHjbn3o</recordid><startdate>20190610</startdate><enddate>20190610</enddate><creator>Keller Tesser, Rafael</creator><creator>Mello Schnorr, Lucas</creator><creator>Legrand, Arnaud</creator><creator>Heinrich, Franz Christian</creator><creator>Dupros, Fabrice</creator><creator>Navaux, Philippe O.A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4828-9942</orcidid><orcidid>https://orcid.org/0000-0002-8415-1046</orcidid><orcidid>https://orcid.org/0000-0001-5733-4982</orcidid></search><sort><creationdate>20190610</creationdate><title>Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation</title><author>Keller Tesser, Rafael ; Mello Schnorr, Lucas ; Legrand, Arnaud ; Heinrich, Franz Christian ; Dupros, Fabrice ; Navaux, Philippe O.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3852-34ed3b8cee3ada5096e2f3e53ca2dacb1017e4f97bcb6a8a50cb8cfeb63b388d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>computer system simulation</topic><topic>Configurations</topic><topic>Decomposition</topic><topic>Dynamic loads</topic><topic>Earthquake damage</topic><topic>Geophysics</topic><topic>geophysics FDM application</topic><topic>high‐performance computing</topic><topic>Load balancing</topic><topic>load balancing and over‐decomposition</topic><topic>Modelling</topic><topic>performance prediction</topic><topic>Process migration</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller Tesser, Rafael</creatorcontrib><creatorcontrib>Mello Schnorr, Lucas</creatorcontrib><creatorcontrib>Legrand, Arnaud</creatorcontrib><creatorcontrib>Heinrich, Franz Christian</creatorcontrib><creatorcontrib>Dupros, Fabrice</creatorcontrib><creatorcontrib>Navaux, Philippe O.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller Tesser, Rafael</au><au>Mello Schnorr, Lucas</au><au>Legrand, Arnaud</au><au>Heinrich, Franz Christian</au><au>Dupros, Fabrice</au><au>Navaux, Philippe O.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation</atitle><jtitle>Concurrency and computation</jtitle><date>2019-06-10</date><risdate>2019</risdate><volume>31</volume><issue>11</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences application dedicated to earthquake modeling. Our analysis reveals imbalance originating from the structure of the input data, and from low‐level CPU optimizations. Ondes3D was successfully ported to AMPI/CHARM++ using over‐decomposition and MPI process migration techniques to dynamically rebalance the load. However, this approach requires careful selection of the over‐decomposition level, the load balancing algorithm, and its activation frequency. These choices are usually tied to application structure and platform characteristics. In this article, we propose a workflow that leverages the capabilities of SimGrid to conduct such study at low experimental cost. We rely on a combination of emulation, simulation, and application modeling that requires minimal code modification and manages to capture both spatial and temporal load imbalance to faithfully predict the performance of dynamic load balancing. We evaluate the quality of our simulation by comparing simulation results with the outcome of real executions and demonstrate how this approach can be used to quickly find the optimal load balancing configuration for a given application/hardware configuration.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5012</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4828-9942</orcidid><orcidid>https://orcid.org/0000-0002-8415-1046</orcidid><orcidid>https://orcid.org/0000-0001-5733-4982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2019-06, Vol.31 (11), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2222537703 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Computer simulation computer system simulation Configurations Decomposition Dynamic loads Earthquake damage Geophysics geophysics FDM application high‐performance computing Load balancing load balancing and over‐decomposition Modelling performance prediction Process migration Workflow |
title | Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20modeling%20of%20a%20geophysics%20application%20to%20accelerate%20over%E2%80%90decomposition%20parameter%20tuning%20through%20simulation&rft.jtitle=Concurrency%20and%20computation&rft.au=Keller%20Tesser,%20Rafael&rft.date=2019-06-10&rft.volume=31&rft.issue=11&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5012&rft_dat=%3Cproquest_cross%3E2222537703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222537703&rft_id=info:pmid/&rfr_iscdi=true |