Performance modeling of a geophysics application to accelerate over‐decomposition parameter tuning through simulation
Summary Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences applicati...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2019-06, Vol.31 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Finite‐difference methods are commonplace in High Performance Computing applications. Despite their apparent regularity, they often exhibit load imbalance that damages their efficiency. We characterize the spatial and temporal load imbalance of Ondes3D, a typical finite‐differences application dedicated to earthquake modeling. Our analysis reveals imbalance originating from the structure of the input data, and from low‐level CPU optimizations. Ondes3D was successfully ported to AMPI/CHARM++ using over‐decomposition and MPI process migration techniques to dynamically rebalance the load. However, this approach requires careful selection of the over‐decomposition level, the load balancing algorithm, and its activation frequency. These choices are usually tied to application structure and platform characteristics. In this article, we propose a workflow that leverages the capabilities of SimGrid to conduct such study at low experimental cost. We rely on a combination of emulation, simulation, and application modeling that requires minimal code modification and manages to capture both spatial and temporal load imbalance to faithfully predict the performance of dynamic load balancing. We evaluate the quality of our simulation by comparing simulation results with the outcome of real executions and demonstrate how this approach can be used to quickly find the optimal load balancing configuration for a given application/hardware configuration. |
---|---|
ISSN: | 1532-0626 1532-0634 |
DOI: | 10.1002/cpe.5012 |