Robust Joint Estimation of Multimicrophone Signal Model Parameters
One of the biggest challenges in multimicrophone applications is the estimation of the parameters of the signal model, such as the power spectral densities (PSDs) of the sources, the early (relative) acoustic transfer functions of the sources with respect to the microphones, the PSD of late reverber...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2019-07, Vol.27 (7), p.1136-1150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the biggest challenges in multimicrophone applications is the estimation of the parameters of the signal model, such as the power spectral densities (PSDs) of the sources, the early (relative) acoustic transfer functions of the sources with respect to the microphones, the PSD of late reverberation, and the PSDs of microphone-self noise. Typically, existing methods estimate subsets of the aforementioned parameters and assume some of the other parameters to be known a priori . This may result in inconsistencies and inaccurately estimated parameters and potential performance degradation in the applications using these estimated parameters. So far, there is no method to jointly estimate all the aforementioned parameters. In this paper, we propose a robust method for jointly estimating all the aforementioned parameters using confirmatory factor analysis. The estimation accuracy of the signal-model parameters thus obtained outperforms existing methods in most cases. We experimentally show significant performance gains in several multimicrophone applications over state-of-the-art methods. |
---|---|
ISSN: | 2329-9290 2329-9304 |
DOI: | 10.1109/TASLP.2019.2911167 |