Sound proofing and thermal properties of an innovative viscoelastic treatment for the turboprop aircraft fuselage
Low-resilience polyurethane foams including several additive constituents were synthesized to improve their vibro-acoustic performances, as well as the thermal insulation. viscoelastic polymer additive can attenuate vibrations and absorb sound energy. the vibro-acoustic properties of two innovative...
Gespeichert in:
Veröffentlicht in: | CEAS aeronautical journal 2019-06, Vol.10 (2), p.443-452 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-resilience polyurethane foams including several additive constituents were synthesized to improve their vibro-acoustic performances, as well as the thermal insulation. viscoelastic polymer additive can attenuate vibrations and absorb sound energy. the vibro-acoustic properties of two innovative viscoelastic treatments fabricated with polyurethane foams are discussed in this paper using a typical aeronautical panel test setup. Since an aircraft insulation arrangement must provide both noise and thermal insulation for the specified operating conditions and expected thermal comfort of passengers, the thermal conductivity of the samples has been examined assuming a testing range between 20 °C (room temperature) and − 40 °C (cruise altitude). the results highlighted an optimal behavior of the novel viscoelastic foams in terms of both acoustic and thermal performance, offering a very interesting self-embedded solution with a good weight to performance ratio, compared to standard blanket composed by extra viscoelastic treatments. |
---|---|
ISSN: | 1869-5582 1869-5590 |
DOI: | 10.1007/s13272-018-0326-z |