On exceptional sets in the metric Poissonian pair correlations problem

Let a n n be a strictly increasing sequence of positive integers. Recent works uncovered a close connection between the additive energy E A N of the cut-offs A N = a n : n ≤ N , and a n n possessing metric Poissonian pair correlations which is a metric version of a uniform distribution property of “...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2019-05, Vol.189 (1), p.137-156
Hauptverfasser: Lachmann, Thomas, Technau, Niclas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let a n n be a strictly increasing sequence of positive integers. Recent works uncovered a close connection between the additive energy E A N of the cut-offs A N = a n : n ≤ N , and a n n possessing metric Poissonian pair correlations which is a metric version of a uniform distribution property of “second order”. Firstly, the present article makes progress on a conjecture of Aichinger, Aistleitner, and Larcher; by sharpening a theorem of Bourgain which states that the set of α ∈ 0 , 1 satisfying that α a n n with E A N = Ω N 3 does not have Poissonian pair correlations has positive Lebesgue measure. Secondly, we construct sequences with high additive energy which do not have metric Poissonian pair correlations, in a strong sense, and provide Hausdorff dimension estimates.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-018-1199-2