Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension

Department of Kinesiology, Université de Montréal, Montreal, Quebec, Canada H3C 3J7 The mechanism by which mechanical forces acting through skeletal muscle cells generate intracellular signaling, known as mechanotransduction, and the details of how gene expression and cell size are regulated by this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2001-08, Vol.91 (2), p.693-702
Hauptverfasser: Martineau, Louis C, Gardiner, Phillip F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Department of Kinesiology, Université de Montréal, Montreal, Quebec, Canada H3C 3J7 The mechanism by which mechanical forces acting through skeletal muscle cells generate intracellular signaling, known as mechanotransduction, and the details of how gene expression and cell size are regulated by this signaling are poorly understood. Mitogen-activated protein kinases (MAPKs) are known to be involved in mechanically induced signaling in various cell types, including skeletal muscle where MAPK activation has been reported in response to contraction and passive stretch. Therefore, the investigation of MAPK activation in response to mechanical stress in skeletal muscle may yield important information about the mechanotransduction process. With the use of a rat plantaris in situ preparation, a wide range of peak tensions was generated through passive stretch and concentric, isometric, and eccentric contractile protocols, and the resulting phosphorylation of c-Jun NH 2 -terminal kinase (JNK), extracellular regulated kinase (ERK), and p38 MAPKs was assessed. Isoforms of JNK and ERK MAPKs were found to be phosphorylated in a tension-dependent manner, such that eccentric > isometric > concentric > passive stretch. Peak tension was found to be a better predictor of MAPK phosphorylation than time-tension integral or rate of tension development. Differences in maximal response amplitude and sensitivity between JNK and ERK MAPKs suggest different roles for these two kinase families in mechanically induced signaling. A strong linear relationship between p54 JNK phosphorylation and peak tension over a 15-fold range in tension ( r 2  = 0.89,  n  = 32) was observed, supporting the fact that contraction-type differences can be explained in terms of tension and demonstrating that MAPK activation is a quantitative reflection of the magnitude of mechanical stress applied to muscle. Thus the measurement of MAPK activation, as an assay of skeletal muscle mechanotransduction, may help elucidate mechanically induced hypertrophy. intracellular signaling; mitogen-activated protein kinases; c-Jun NH 2 -terminal kinase; eccentric contraction
ISSN:8750-7587
1522-1601
DOI:10.1152/jappl.2001.91.2.693