Subquadratic Algorithms for Succinct Stable Matching

We consider the stable matching problem when the preference lists are not given explicitly but are represented in a succinct way and ask whether the problem becomes computationally easier and investigate other implications. We give subquadratic algorithms for finding a stable matching in special cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2019-07, Vol.81 (7), p.2991-3024
Hauptverfasser: Künnemann, Marvin, Moeller, Daniel, Paturi, Ramamohan, Schneider, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the stable matching problem when the preference lists are not given explicitly but are represented in a succinct way and ask whether the problem becomes computationally easier and investigate other implications. We give subquadratic algorithms for finding a stable matching in special cases of natural succinct representations of the problem, the d -attribute, d -list, geometric, and single-peaked models. We also present algorithms for verifying a stable matching in the same models. We further show that for d = ω ( log n ) both finding and verifying a stable matching in the d -attribute and d -dimensional geometric models requires quadratic time assuming the Strong Exponential Time Hypothesis. This suggests that these succinct models are not significantly simpler computationally than the general case for sufficiently large d .
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-019-00564-x