Nilpotent Group-Counterexamples to Zilbers Conjecture
We construct uncountably categorical 3-nilpotent groups of exponent p > 3. They are not one-based and do not allow the interpretation of an infinite field. Therefore they are counterexamples to Zilbers Conjecture. First 2-nilpotent new uncoutably categorical groups were contructed in [3]. Here we...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct uncountably categorical 3-nilpotent groups of exponent p > 3. They are not one-based and do not allow the interpretation of an infinite field. Therefore they are counterexamples to Zilbers Conjecture. First 2-nilpotent new uncoutably categorical groups were contructed in [3]. Here we use the method of the additive Collapse developed in [5]. Essentially we work with 3-nilpotent graded Lie algebras over the field with p elements. |
---|---|
ISSN: | 2331-8422 |