Nilpotent Group-Counterexamples to Zilbers Conjecture

We construct uncountably categorical 3-nilpotent groups of exponent p > 3. They are not one-based and do not allow the interpretation of an infinite field. Therefore they are counterexamples to Zilbers Conjecture. First 2-nilpotent new uncoutably categorical groups were contructed in [3]. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
1. Verfasser: Baudisch, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct uncountably categorical 3-nilpotent groups of exponent p > 3. They are not one-based and do not allow the interpretation of an infinite field. Therefore they are counterexamples to Zilbers Conjecture. First 2-nilpotent new uncoutably categorical groups were contructed in [3]. Here we use the method of the additive Collapse developed in [5]. Essentially we work with 3-nilpotent graded Lie algebras over the field with p elements.
ISSN:2331-8422