Point-less: More Abstractive Summarization with Pointer-Generator Networks
The Pointer-Generator architecture has shown to be a big improvement for abstractive summarization seq2seq models. However, the summaries produced by this model are largely extractive as over 30% of the generated sentences are copied from the source text. This work proposes a multihead attention mec...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Pointer-Generator architecture has shown to be a big improvement for abstractive summarization seq2seq models. However, the summaries produced by this model are largely extractive as over 30% of the generated sentences are copied from the source text. This work proposes a multihead attention mechanism, pointer dropout, and two new loss functions to promote more abstractive summaries while maintaining similar ROUGE scores. Both the multihead attention and dropout do not improve N-gram novelty, however, the dropout acts as a regularizer which improves the ROUGE score. The new loss function achieves significantly higher novel N-grams and sentences, at the cost of a slightly lower ROUGE score. |
---|---|
ISSN: | 2331-8422 |