Ranks and isomorphism theorems of semigroups of linear transformations with restricted range
Let P ( V ) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V , define the following subsemigroups of P ( V ): P T ( V , W ) = { α ∈ P ( V ) | V α ⊆ W } , T ( V , W ) = { α ∈ P ( V , W ) | dom α = V } , I ( V , W ) = { α ∈ P ( V , W )...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2019-06, Vol.98 (3), p.456-471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
P
(
V
) be the partial linear transformation semigroup of a vector space
V
under composition. Given a fixed subspace
W
of
V
, define the following subsemigroups of
P
(
V
):
P
T
(
V
,
W
)
=
{
α
∈
P
(
V
)
|
V
α
⊆
W
}
,
T
(
V
,
W
)
=
{
α
∈
P
(
V
,
W
)
|
dom
α
=
V
}
,
I
(
V
,
W
)
=
{
α
∈
P
(
V
,
W
)
|
α
is injective
}
.
In this paper, we prove certain isomorphism theorems and compute the ranks of these three semigroups for any proper subspace
W
of
V
when
V
is a finite-dimensional vector space over a finite field. Gaussian binomial coefficients play an essential role in these computations. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-018-9956-z |