Ranks and isomorphism theorems of semigroups of linear transformations with restricted range

Let P ( V ) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V , define the following subsemigroups of P ( V ): P T ( V , W ) = { α ∈ P ( V ) | V α ⊆ W } , T ( V , W ) = { α ∈ P ( V , W ) | dom α = V } , I ( V , W ) = { α ∈ P ( V , W )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2019-06, Vol.98 (3), p.456-471
Hauptverfasser: Sangkhanan, Kritsada, Sanwong, Jintana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let P ( V ) be the partial linear transformation semigroup of a vector space V under composition. Given a fixed subspace W of V , define the following subsemigroups of P ( V ): P T ( V , W ) = { α ∈ P ( V ) | V α ⊆ W } , T ( V , W ) = { α ∈ P ( V , W ) | dom α = V } , I ( V , W ) = { α ∈ P ( V , W ) | α is injective } . In this paper, we prove certain isomorphism theorems and compute the ranks of these three semigroups for any proper subspace W of V when V is a finite-dimensional vector space over a finite field. Gaussian binomial coefficients play an essential role in these computations.
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-018-9956-z