Differential Operators of Infinite Order in the Space of Formal Laurent Series and in the Ring of Power Series with Integer Coefficients

We study the Hurwitz product (convolution) in the space of formal Laurent series over an arbitrary field of zero characteristic. We obtain the convolution equation which is satisfied by the Euler series. We find the convolution representation for an arbitrary differential operator of infinite order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-06, Vol.239 (3), p.282-291
1. Verfasser: Gefter, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Hurwitz product (convolution) in the space of formal Laurent series over an arbitrary field of zero characteristic. We obtain the convolution equation which is satisfied by the Euler series. We find the convolution representation for an arbitrary differential operator of infinite order in the space of formal Laurent series and describe translation invariant operators in this space. Using the p -adic topology in the ring of integers, we show that any differential operator of infinite order with integer coefficients is well defined as an operator from ℤ [[ z ]] to ℤ p [[ z ]].
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04304-y