Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip

Scaling-up optical quantum technologies requires to combine highly efficient multi-photon sources and integrated waveguide components. Here, we interface these scalable platforms: a quantum dot based multi-photon source and a reconfigurable photonic chip on glass are combined to demonstrate high-rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
Hauptverfasser: Antón, C, Loredo, J C, Coppola, G, Ollivier, H, Viggianiello, N, Harouri, A, Somaschi, N, Crespi, A, Sagnes, I, Lemaître, A, Lanco, L, Osellame, R, Sciarrino, F, Senellart, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scaling-up optical quantum technologies requires to combine highly efficient multi-photon sources and integrated waveguide components. Here, we interface these scalable platforms: a quantum dot based multi-photon source and a reconfigurable photonic chip on glass are combined to demonstrate high-rate three-photon interference. The temporal train of single-photons obtained from a quantum emitter is actively demultiplexed to generate a 3.8 kHz three-photon source, which is then sent to the input of a tuneable tritter circuit, demonstrating the on-chip quantum interference of three indistinguishable single-photons. Pseudo number-resolving photon detection characterising the output distribution shows that this first combination of scalable sources and reconfigurable photonic circuits compares favourably in performance with respect to previous implementations. A detailed loss-budget shows that merging solid-state based multi-photon sources and reconfigurable photonic chips could allow ten-photon experiments on chip at \({\sim}40\) Hz rate in a foreseeable future.
ISSN:2331-8422