Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure

We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-05, Vol.125 (17)
Hauptverfasser: Suekuni, Koichiro, Usui, Hidetomo, Qiao, Siying, Hashikuni, Katsuaki, Hirano, Tatsuya, Nishiate, Hirotaka, Lee, Chul-Ho, Kuroki, Kazuhiko, Watanabe, Kosuke, Ohtaki, Michitaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Journal of applied physics
container_volume 125
creator Suekuni, Koichiro
Usui, Hidetomo
Qiao, Siying
Hashikuni, Katsuaki
Hirano, Tatsuya
Nishiate, Hirotaka
Lee, Chul-Ho
Kuroki, Kazuhiko
Watanabe, Kosuke
Ohtaki, Michitaka
description We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.
doi_str_mv 10.1063/1.5093183
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2220450605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220450605</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-34563906c7294102aa9e41a90812af5dd12abef5e7873116bf8153c2eb3f82633</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqUw8AaW2JASru04sUdUlR-pgqFltpzEUV21cWo7UN6AmUfkSQhQqRvTGc53jz5dhC4JpARydkNSDpIRwY7QiICQScE5HKMRACWJkIU8RWchrADIwMgR6qZrU0XvWlvhEH1fxd4brNsax6XxG2d-66HsvOuMj9YE7Bo8b0lKvz4-d0_lbmEhFXOG32xcYo23vQ42ca1JarsxbbCu1evD9jk6afQ6mIt9jtHL3XQxeUhmz_ePk9tZ0g1iMWEZz5mEvCqozAhQraXJiJYgCNUNr-shStNwU4iCEZKXjSCcVdSUrBE0Z2yMrv52B_Ftb0JUK9f7QSUoSilkHHLgA3X9R4XKRh0HV9V5u9H-Xb06r4jaf1N1dfMfTED9vP9wwL4BK6N30w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220450605</pqid></control><display><type>article</type><title>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Suekuni, Koichiro ; Usui, Hidetomo ; Qiao, Siying ; Hashikuni, Katsuaki ; Hirano, Tatsuya ; Nishiate, Hirotaka ; Lee, Chul-Ho ; Kuroki, Kazuhiko ; Watanabe, Kosuke ; Ohtaki, Michitaka</creator><creatorcontrib>Suekuni, Koichiro ; Usui, Hidetomo ; Qiao, Siying ; Hashikuni, Katsuaki ; Hirano, Tatsuya ; Nishiate, Hirotaka ; Lee, Chul-Ho ; Kuroki, Kazuhiko ; Watanabe, Kosuke ; Ohtaki, Michitaka</creatorcontrib><description>We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5093183</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Bonding strength ; Carrier density ; Crystal structure ; Crystallites ; Crystals ; Electrical resistivity ; Electronic properties ; Electronic structure ; Electrons ; First principles ; Power factor ; Seebeck effect ; Single crystals ; Temperature dependence ; Thermal conductivity ; Thermoelectricity ; Tin ; Titanium nitride</subject><ispartof>Journal of applied physics, 2019-05, Vol.125 (17)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3536-8206 ; 0000-0001-6918-976X ; 0000-0002-0515-4864 ; 0000-0002-1387-5979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5093183$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Suekuni, Koichiro</creatorcontrib><creatorcontrib>Usui, Hidetomo</creatorcontrib><creatorcontrib>Qiao, Siying</creatorcontrib><creatorcontrib>Hashikuni, Katsuaki</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Nishiate, Hirotaka</creatorcontrib><creatorcontrib>Lee, Chul-Ho</creatorcontrib><creatorcontrib>Kuroki, Kazuhiko</creatorcontrib><creatorcontrib>Watanabe, Kosuke</creatorcontrib><creatorcontrib>Ohtaki, Michitaka</creatorcontrib><title>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</title><title>Journal of applied physics</title><description>We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Bonding strength</subject><subject>Carrier density</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Electrical resistivity</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>First principles</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Single crystals</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Tin</subject><subject>Titanium nitride</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqUw8AaW2JASru04sUdUlR-pgqFltpzEUV21cWo7UN6AmUfkSQhQqRvTGc53jz5dhC4JpARydkNSDpIRwY7QiICQScE5HKMRACWJkIU8RWchrADIwMgR6qZrU0XvWlvhEH1fxd4brNsax6XxG2d-66HsvOuMj9YE7Bo8b0lKvz4-d0_lbmEhFXOG32xcYo23vQ42ca1JarsxbbCu1evD9jk6afQ6mIt9jtHL3XQxeUhmz_ePk9tZ0g1iMWEZz5mEvCqozAhQraXJiJYgCNUNr-shStNwU4iCEZKXjSCcVdSUrBE0Z2yMrv52B_Ftb0JUK9f7QSUoSilkHHLgA3X9R4XKRh0HV9V5u9H-Xb06r4jaf1N1dfMfTED9vP9wwL4BK6N30w</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Suekuni, Koichiro</creator><creator>Usui, Hidetomo</creator><creator>Qiao, Siying</creator><creator>Hashikuni, Katsuaki</creator><creator>Hirano, Tatsuya</creator><creator>Nishiate, Hirotaka</creator><creator>Lee, Chul-Ho</creator><creator>Kuroki, Kazuhiko</creator><creator>Watanabe, Kosuke</creator><creator>Ohtaki, Michitaka</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3536-8206</orcidid><orcidid>https://orcid.org/0000-0001-6918-976X</orcidid><orcidid>https://orcid.org/0000-0002-0515-4864</orcidid><orcidid>https://orcid.org/0000-0002-1387-5979</orcidid></search><sort><creationdate>20190507</creationdate><title>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</title><author>Suekuni, Koichiro ; Usui, Hidetomo ; Qiao, Siying ; Hashikuni, Katsuaki ; Hirano, Tatsuya ; Nishiate, Hirotaka ; Lee, Chul-Ho ; Kuroki, Kazuhiko ; Watanabe, Kosuke ; Ohtaki, Michitaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-34563906c7294102aa9e41a90812af5dd12abef5e7873116bf8153c2eb3f82633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Bonding strength</topic><topic>Carrier density</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Electrical resistivity</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>First principles</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Single crystals</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Tin</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suekuni, Koichiro</creatorcontrib><creatorcontrib>Usui, Hidetomo</creatorcontrib><creatorcontrib>Qiao, Siying</creatorcontrib><creatorcontrib>Hashikuni, Katsuaki</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Nishiate, Hirotaka</creatorcontrib><creatorcontrib>Lee, Chul-Ho</creatorcontrib><creatorcontrib>Kuroki, Kazuhiko</creatorcontrib><creatorcontrib>Watanabe, Kosuke</creatorcontrib><creatorcontrib>Ohtaki, Michitaka</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suekuni, Koichiro</au><au>Usui, Hidetomo</au><au>Qiao, Siying</au><au>Hashikuni, Katsuaki</au><au>Hirano, Tatsuya</au><au>Nishiate, Hirotaka</au><au>Lee, Chul-Ho</au><au>Kuroki, Kazuhiko</au><au>Watanabe, Kosuke</au><au>Ohtaki, Michitaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</atitle><jtitle>Journal of applied physics</jtitle><date>2019-05-07</date><risdate>2019</risdate><volume>125</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5093183</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3536-8206</orcidid><orcidid>https://orcid.org/0000-0001-6918-976X</orcidid><orcidid>https://orcid.org/0000-0002-0515-4864</orcidid><orcidid>https://orcid.org/0000-0002-1387-5979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-05, Vol.125 (17)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2220450605
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Applied physics
Bonding strength
Carrier density
Crystal structure
Crystallites
Crystals
Electrical resistivity
Electronic properties
Electronic structure
Electrons
First principles
Power factor
Seebeck effect
Single crystals
Temperature dependence
Thermal conductivity
Thermoelectricity
Tin
Titanium nitride
title Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20and%20thermoelectric%20properties%20of%20Sn1.2%E2%88%92xNbxTi0.8S3%20with%20a%20quasi-one-dimensional%20structure&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Suekuni,%20Koichiro&rft.date=2019-05-07&rft.volume=125&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5093183&rft_dat=%3Cproquest_scita%3E2220450605%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220450605&rft_id=info:pmid/&rfr_iscdi=true