Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure
We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-05, Vol.125 (17) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 125 |
creator | Suekuni, Koichiro Usui, Hidetomo Qiao, Siying Hashikuni, Katsuaki Hirano, Tatsuya Nishiate, Hirotaka Lee, Chul-Ho Kuroki, Kazuhiko Watanabe, Kosuke Ohtaki, Michitaka |
description | We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites. |
doi_str_mv | 10.1063/1.5093183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2220450605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220450605</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-34563906c7294102aa9e41a90812af5dd12abef5e7873116bf8153c2eb3f82633</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqUw8AaW2JASru04sUdUlR-pgqFltpzEUV21cWo7UN6AmUfkSQhQqRvTGc53jz5dhC4JpARydkNSDpIRwY7QiICQScE5HKMRACWJkIU8RWchrADIwMgR6qZrU0XvWlvhEH1fxd4brNsax6XxG2d-66HsvOuMj9YE7Bo8b0lKvz4-d0_lbmEhFXOG32xcYo23vQ42ca1JarsxbbCu1evD9jk6afQ6mIt9jtHL3XQxeUhmz_ePk9tZ0g1iMWEZz5mEvCqozAhQraXJiJYgCNUNr-shStNwU4iCEZKXjSCcVdSUrBE0Z2yMrv52B_Ftb0JUK9f7QSUoSilkHHLgA3X9R4XKRh0HV9V5u9H-Xb06r4jaf1N1dfMfTED9vP9wwL4BK6N30w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220450605</pqid></control><display><type>article</type><title>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Suekuni, Koichiro ; Usui, Hidetomo ; Qiao, Siying ; Hashikuni, Katsuaki ; Hirano, Tatsuya ; Nishiate, Hirotaka ; Lee, Chul-Ho ; Kuroki, Kazuhiko ; Watanabe, Kosuke ; Ohtaki, Michitaka</creator><creatorcontrib>Suekuni, Koichiro ; Usui, Hidetomo ; Qiao, Siying ; Hashikuni, Katsuaki ; Hirano, Tatsuya ; Nishiate, Hirotaka ; Lee, Chul-Ho ; Kuroki, Kazuhiko ; Watanabe, Kosuke ; Ohtaki, Michitaka</creatorcontrib><description>We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5093183</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Bonding strength ; Carrier density ; Crystal structure ; Crystallites ; Crystals ; Electrical resistivity ; Electronic properties ; Electronic structure ; Electrons ; First principles ; Power factor ; Seebeck effect ; Single crystals ; Temperature dependence ; Thermal conductivity ; Thermoelectricity ; Tin ; Titanium nitride</subject><ispartof>Journal of applied physics, 2019-05, Vol.125 (17)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3536-8206 ; 0000-0001-6918-976X ; 0000-0002-0515-4864 ; 0000-0002-1387-5979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5093183$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Suekuni, Koichiro</creatorcontrib><creatorcontrib>Usui, Hidetomo</creatorcontrib><creatorcontrib>Qiao, Siying</creatorcontrib><creatorcontrib>Hashikuni, Katsuaki</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Nishiate, Hirotaka</creatorcontrib><creatorcontrib>Lee, Chul-Ho</creatorcontrib><creatorcontrib>Kuroki, Kazuhiko</creatorcontrib><creatorcontrib>Watanabe, Kosuke</creatorcontrib><creatorcontrib>Ohtaki, Michitaka</creatorcontrib><title>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</title><title>Journal of applied physics</title><description>We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Bonding strength</subject><subject>Carrier density</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Electrical resistivity</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>First principles</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Single crystals</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Tin</subject><subject>Titanium nitride</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqUw8AaW2JASru04sUdUlR-pgqFltpzEUV21cWo7UN6AmUfkSQhQqRvTGc53jz5dhC4JpARydkNSDpIRwY7QiICQScE5HKMRACWJkIU8RWchrADIwMgR6qZrU0XvWlvhEH1fxd4brNsax6XxG2d-66HsvOuMj9YE7Bo8b0lKvz4-d0_lbmEhFXOG32xcYo23vQ42ca1JarsxbbCu1evD9jk6afQ6mIt9jtHL3XQxeUhmz_ePk9tZ0g1iMWEZz5mEvCqozAhQraXJiJYgCNUNr-shStNwU4iCEZKXjSCcVdSUrBE0Z2yMrv52B_Ftb0JUK9f7QSUoSilkHHLgA3X9R4XKRh0HV9V5u9H-Xb06r4jaf1N1dfMfTED9vP9wwL4BK6N30w</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Suekuni, Koichiro</creator><creator>Usui, Hidetomo</creator><creator>Qiao, Siying</creator><creator>Hashikuni, Katsuaki</creator><creator>Hirano, Tatsuya</creator><creator>Nishiate, Hirotaka</creator><creator>Lee, Chul-Ho</creator><creator>Kuroki, Kazuhiko</creator><creator>Watanabe, Kosuke</creator><creator>Ohtaki, Michitaka</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3536-8206</orcidid><orcidid>https://orcid.org/0000-0001-6918-976X</orcidid><orcidid>https://orcid.org/0000-0002-0515-4864</orcidid><orcidid>https://orcid.org/0000-0002-1387-5979</orcidid></search><sort><creationdate>20190507</creationdate><title>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</title><author>Suekuni, Koichiro ; Usui, Hidetomo ; Qiao, Siying ; Hashikuni, Katsuaki ; Hirano, Tatsuya ; Nishiate, Hirotaka ; Lee, Chul-Ho ; Kuroki, Kazuhiko ; Watanabe, Kosuke ; Ohtaki, Michitaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-34563906c7294102aa9e41a90812af5dd12abef5e7873116bf8153c2eb3f82633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Bonding strength</topic><topic>Carrier density</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Electrical resistivity</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>First principles</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Single crystals</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Tin</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suekuni, Koichiro</creatorcontrib><creatorcontrib>Usui, Hidetomo</creatorcontrib><creatorcontrib>Qiao, Siying</creatorcontrib><creatorcontrib>Hashikuni, Katsuaki</creatorcontrib><creatorcontrib>Hirano, Tatsuya</creatorcontrib><creatorcontrib>Nishiate, Hirotaka</creatorcontrib><creatorcontrib>Lee, Chul-Ho</creatorcontrib><creatorcontrib>Kuroki, Kazuhiko</creatorcontrib><creatorcontrib>Watanabe, Kosuke</creatorcontrib><creatorcontrib>Ohtaki, Michitaka</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suekuni, Koichiro</au><au>Usui, Hidetomo</au><au>Qiao, Siying</au><au>Hashikuni, Katsuaki</au><au>Hirano, Tatsuya</au><au>Nishiate, Hirotaka</au><au>Lee, Chul-Ho</au><au>Kuroki, Kazuhiko</au><au>Watanabe, Kosuke</au><au>Ohtaki, Michitaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure</atitle><jtitle>Journal of applied physics</jtitle><date>2019-05-07</date><risdate>2019</risdate><volume>125</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5093183</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3536-8206</orcidid><orcidid>https://orcid.org/0000-0001-6918-976X</orcidid><orcidid>https://orcid.org/0000-0002-0515-4864</orcidid><orcidid>https://orcid.org/0000-0002-1387-5979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-05, Vol.125 (17) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2220450605 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Applied physics Bonding strength Carrier density Crystal structure Crystallites Crystals Electrical resistivity Electronic properties Electronic structure Electrons First principles Power factor Seebeck effect Single crystals Temperature dependence Thermal conductivity Thermoelectricity Tin Titanium nitride |
title | Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20and%20thermoelectric%20properties%20of%20Sn1.2%E2%88%92xNbxTi0.8S3%20with%20a%20quasi-one-dimensional%20structure&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Suekuni,%20Koichiro&rft.date=2019-05-07&rft.volume=125&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5093183&rft_dat=%3Cproquest_scita%3E2220450605%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220450605&rft_id=info:pmid/&rfr_iscdi=true |