Electronic structure and thermoelectric properties of Sn1.2−xNbxTi0.8S3 with a quasi-one-dimensional structure
We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-05, Vol.125 (17) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite “ribbons” of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K−1 m−1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5093183 |