Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease

Quercetin belongs to the flavonoids family, which is present in most of the plants including fruits, vegetables, green tea and even in red wine having antioxidant activities. It is available as a food supplement in the market and has physiological health effects. Quercetin has anti-inflammatory, ant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2019-05, Vol.224, p.109-119
Hauptverfasser: Zaplatic, Elizabeta, Bule, Muhammed, Shah, Syed Zahid Ali, Uddin, Md. Sahab, Niaz, Kamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quercetin belongs to the flavonoids family, which is present in most of the plants including fruits, vegetables, green tea and even in red wine having antioxidant activities. It is available as a food supplement in the market and has physiological health effects. Quercetin has anti-inflammatory, anticancer and anti-prostate activities along with its beneficial effects on high cholesterol, kidney transplantation, asthma, diabetes, viral infections, pulmonary, schizophrenia and cardiovascular diseases. Quercetin possesses scavenging potential of hydroxyl radical (OH−), hydrogen peroxide (H2O2), and superoxide anion (O2−). These reactive oxygen species (ROS) hampers lipid, protein, amino acids and deoxyribonucleic acid (DNA) processing leading to epigenetic alterations. Quercetin has the ability to combat these harmful effects. ROS plays a vital role in the progression of Alzheimer's disease (AD), and we propose that quercetin would be the best choice to overcome cellular and molecular signals in regulating normal physiological functions. However, data are not well documented regarding exact cellular mechanisms of quercetin. The neuroprotective effects of quercetin are mainly due to potential up- and/or down-regulation of cytokines via nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Paraoxonase-2, c-Jun N-terminal kinase (JNK), Protein kinase C, Mitogen-activated protein kinase (MAPK) signalling cascades, and PI3K/Akt pathways. Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against AD. [Display omitted] •Quercetin improves cellular functions.•Quercetin acts via modulating signalling pathways and gene expressions.•Quercetin-induced Nrf-2 translocation from the cytoplasm to the nucleus•Quercetin ameliorates AD via antioxidant pathways.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2019.03.055