Intrusion Detection in Wireless Sensor Networks with an Improved NSA Based on Space Division
Inspired by the biological immune system, many researchers apply artificial immune principles to intrusion detection in wireless sensor networks, such as negative selection algorithms, danger theory, and dendritic cell algorithms. When applying the negative selection algorithm to wireless sensor net...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2019-01, Vol.2019 (2019), p.1-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by the biological immune system, many researchers apply artificial immune principles to intrusion detection in wireless sensor networks, such as negative selection algorithms, danger theory, and dendritic cell algorithms. When applying the negative selection algorithm to wireless sensor networks, the characteristics of wireless sensor networks, such as frequent changes in network topology and limited resources, are not considered too much, which makes the detection effect to need improvement. In this paper, a negative selection algorithm based on spatial partition is proposed and applied to hierarchical wireless sensor networks. The algorithm first analyzes the distribution of self-set in the real-valued space then divides the real-valued space, and several subspaces are obtained. Selves are filled into different subspaces. We implement the negative selection algorithm in the subspace. The randomly generated candidate detector only needs to be tolerated with selves in the subspace where the detector is located, not all the selves. This operation reduces the time cost of distance calculation. In the detection process of detectors, the antigen which is to be detected only needs to match the mature detectors in the subspace where the antigen is located, rather than all the detectors. This operation speeds up the antigen detection process. Theoretical analysis and experimental results show that the algorithm has better time efficiency and quality of detectors, saves sensor node resources and reduces the energy consumption, and is an effective algorithm for wireless sensor network intrusion detection. |
---|---|
ISSN: | 1687-725X 1687-7268 |
DOI: | 10.1155/2019/5451263 |