Stability of the fractional Volterra integro‐differential equation by means of ψ‐Hilfer operator
In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ−Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integr...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-06, Vol.42 (9), p.3033-3043 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ−Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space
W1,1(R+,C). |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.5563 |