Stability of the fractional Volterra integro‐differential equation by means of ψ‐Hilfer operator

In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ−Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-06, Vol.42 (9), p.3033-3043
Hauptverfasser: Sousa, José Vanterler da C., Rodrigues, Fabio G., Capelas de Oliveira, Edmundo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ−Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space W1,1(R+,C).
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5563