Decomposition of permutations in a finite field

We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2019-05, Vol.11 (3), p.379-384
Hauptverfasser: Nikova, Svetla, Nikov, Ventzislav, Rijmen, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 3
container_start_page 379
container_title Cryptography and communications
container_volume 11
creator Nikova, Svetla
Nikov, Ventzislav
Rijmen, Vincent
description We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions into quadratic power permutations for any n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4. Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n -bit permutation can be decomposed in quadratic and cubic permutations.
doi_str_mv 10.1007/s12095-018-0317-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219658954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219658954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8872147a70fae131e7d943340688affeea8dc2a83d0968c4d0d0185b43712aba3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hF4my660dsH1F5SpW4wNlyExulauJgpwf-Pa6C4MRpdqVvZldDyDXCLQKoVUYGRlJATYGjouyELNDwmjIh5envLNQ5uch5B1BLJviCrO59E_sx5m7q4lDFUI0-9YfJHddcdUPlqtAN3eSL-H17Sc6C22d_9aNL8v748LZ-ppvXp5f13YY2XJqJaq0YCuUUBOeRo1etEZwLqLV2IXjvdNswp3kLptaNaKEtr8ut4AqZ2zq-JDdz7pji58Hnye7iIQ3lpGUMTS21kaJQOFNNijknH-yYut6lL4tgj73YuRdbwu2xF8uKh82eXNjhw6e_5P9N301MY-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219658954</pqid></control><display><type>article</type><title>Decomposition of permutations in a finite field</title><source>SpringerLink (Online service)</source><creator>Nikova, Svetla ; Nikov, Ventzislav ; Rijmen, Vincent</creator><creatorcontrib>Nikova, Svetla ; Nikov, Ventzislav ; Rijmen, Vincent</creatorcontrib><description>We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions into quadratic power permutations for any n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4. Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n -bit permutation can be decomposed in quadratic and cubic permutations.</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-018-0317-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Communications Engineering ; Computer Science ; Data Structures and Information Theory ; Decomposition ; Fields (mathematics) ; Information and Communication ; Mathematics of Computing ; Networks ; Permutations ; Special Issue: Mathematical Methods for Cryptography</subject><ispartof>Cryptography and communications, 2019-05, Vol.11 (3), p.379-384</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8872147a70fae131e7d943340688affeea8dc2a83d0968c4d0d0185b43712aba3</citedby><cites>FETCH-LOGICAL-c359t-8872147a70fae131e7d943340688affeea8dc2a83d0968c4d0d0185b43712aba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12095-018-0317-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12095-018-0317-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Nikova, Svetla</creatorcontrib><creatorcontrib>Nikov, Ventzislav</creatorcontrib><creatorcontrib>Rijmen, Vincent</creatorcontrib><title>Decomposition of permutations in a finite field</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions into quadratic power permutations for any n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4. Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n -bit permutation can be decomposed in quadratic and cubic permutations.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Fields (mathematics)</subject><subject>Information and Communication</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><subject>Permutations</subject><subject>Special Issue: Mathematical Methods for Cryptography</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hF4my660dsH1F5SpW4wNlyExulauJgpwf-Pa6C4MRpdqVvZldDyDXCLQKoVUYGRlJATYGjouyELNDwmjIh5envLNQ5uch5B1BLJviCrO59E_sx5m7q4lDFUI0-9YfJHddcdUPlqtAN3eSL-H17Sc6C22d_9aNL8v748LZ-ppvXp5f13YY2XJqJaq0YCuUUBOeRo1etEZwLqLV2IXjvdNswp3kLptaNaKEtr8ut4AqZ2zq-JDdz7pji58Hnye7iIQ3lpGUMTS21kaJQOFNNijknH-yYut6lL4tgj73YuRdbwu2xF8uKh82eXNjhw6e_5P9N301MY-E</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Nikova, Svetla</creator><creator>Nikov, Ventzislav</creator><creator>Rijmen, Vincent</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190515</creationdate><title>Decomposition of permutations in a finite field</title><author>Nikova, Svetla ; Nikov, Ventzislav ; Rijmen, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8872147a70fae131e7d943340688affeea8dc2a83d0968c4d0d0185b43712aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Fields (mathematics)</topic><topic>Information and Communication</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><topic>Permutations</topic><topic>Special Issue: Mathematical Methods for Cryptography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikova, Svetla</creatorcontrib><creatorcontrib>Nikov, Ventzislav</creatorcontrib><creatorcontrib>Rijmen, Vincent</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikova, Svetla</au><au>Nikov, Ventzislav</au><au>Rijmen, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition of permutations in a finite field</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>379</spage><epage>384</epage><pages>379-384</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions into quadratic power permutations for any n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4. Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n -bit permutation can be decomposed in quadratic and cubic permutations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-018-0317-2</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-2447
ispartof Cryptography and communications, 2019-05, Vol.11 (3), p.379-384
issn 1936-2447
1936-2455
language eng
recordid cdi_proquest_journals_2219658954
source SpringerLink (Online service)
subjects Circuits
Coding and Information Theory
Communications Engineering
Computer Science
Data Structures and Information Theory
Decomposition
Fields (mathematics)
Information and Communication
Mathematics of Computing
Networks
Permutations
Special Issue: Mathematical Methods for Cryptography
title Decomposition of permutations in a finite field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20of%20permutations%20in%20a%20finite%20field&rft.jtitle=Cryptography%20and%20communications&rft.au=Nikova,%20Svetla&rft.date=2019-05-15&rft.volume=11&rft.issue=3&rft.spage=379&rft.epage=384&rft.pages=379-384&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-018-0317-2&rft_dat=%3Cproquest_cross%3E2219658954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219658954&rft_id=info:pmid/&rfr_iscdi=true