Decomposition of permutations in a finite field

We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2019-05, Vol.11 (3), p.379-384
Hauptverfasser: Nikova, Svetla, Nikov, Ventzislav, Rijmen, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2 n ) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions into quadratic power permutations for any n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4. Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n -bit permutation can be decomposed in quadratic and cubic permutations.
ISSN:1936-2447
1936-2455
DOI:10.1007/s12095-018-0317-2