Is there chiral correlation between graphitic layers in double-wall carbon nanotubes?
Because of the unique concentric structure, double-wall carbon nanotubes (DWNTs) possess fascinating properties which depend on the respective chirality of both the outer and the inner tubes. In this work, we study the chiral correlations of DWNTs synthesized by chemical vapor deposition on Fe nanop...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-04, Vol.144, p.147-151 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because of the unique concentric structure, double-wall carbon nanotubes (DWNTs) possess fascinating properties which depend on the respective chirality of both the outer and the inner tubes. In this work, we study the chiral correlations of DWNTs synthesized by chemical vapor deposition on Fe nanoparticles. Contrary to some recent report, the distribution of chiral angle difference between inner and outer tubes in our work agrees with that calculated for all possible configurations. Remarkably, DWNTs with commensurate structures, i.e. outer and inner tubes have same chiral angles, are observed. The mechanism for the formation of DWNTs with approximately commensurate structures is discussed on the basis of layer by layer model. Furthermore, the interactional energies between the inner and outer walls are calculated to address the stability of different DWNT configurations. This work helps understand the growth mechanism of DWNTs and comprehend their structure stabilities with different configurations.
Double-wall carbon nanotubes (DWNTs) synthesized by chemical vapor deposition show randomly distributed chiral angle differences between inner and outer tubes. The mechanism for the formation of DWNTs with approximately commensurate structures is discussed based on layer by layer model. The interactional energies between the inner and outer walls are calculated to address the stability of different DWNT configurations. [Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2018.12.003 |