Vanishing theorems for the cohomology groups of free boundary submanifolds
In this paper, we prove that there exists a universal constant C , depending only on positive integers n ≥ 3 and p ≤ n - 1 , such that if M n is a compact free boundary submanifold of dimension n immersed in the Euclidean unit ball B n + k whose size of the traceless second fundamental form is less...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2019-07, Vol.56 (1), p.137-146 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that there exists a universal constant
C
, depending only on positive integers
n
≥
3
and
p
≤
n
-
1
, such that if
M
n
is a compact free boundary submanifold of dimension
n
immersed in the Euclidean unit ball
B
n
+
k
whose size of the traceless second fundamental form is less than
C
, then the
p
th cohomology group of
M
n
vanishes. Also, employing a different technique, we obtain a rigidity result for compact free boundary surfaces minimally immersed in the unit ball
B
2
+
k
. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-019-09660-1 |