Vanishing theorems for the cohomology groups of free boundary submanifolds

In this paper, we prove that there exists a universal constant C , depending only on positive integers n ≥ 3 and p ≤ n - 1 , such that if M n is a compact free boundary submanifold of dimension n immersed in the Euclidean unit ball B n + k whose size of the traceless second fundamental form is less...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2019-07, Vol.56 (1), p.137-146
Hauptverfasser: Cavalcante, Marcos P., Mendes, Abraão, Vitório, Feliciano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove that there exists a universal constant C , depending only on positive integers n ≥ 3 and p ≤ n - 1 , such that if M n is a compact free boundary submanifold of dimension n immersed in the Euclidean unit ball B n + k whose size of the traceless second fundamental form is less than C , then the p th cohomology group of M n vanishes. Also, employing a different technique, we obtain a rigidity result for compact free boundary surfaces minimally immersed in the unit ball B 2 + k .
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-019-09660-1