Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams
This study presents a novel artificial intelligence (AI) technique based on two support vector machine (SVM) models and symbiotic organisms search (SOS) algorithm, called “optimized support vector machines with adaptive ensemble weighting” (OSVM-AEW), to predict the shear capacity of reinforced-conc...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2020-07, Vol.36 (3), p.1135-1153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents a novel artificial intelligence (AI) technique based on two support vector machine (SVM) models and symbiotic organisms search (SOS) algorithm, called “optimized support vector machines with adaptive ensemble weighting” (OSVM-AEW), to predict the shear capacity of reinforced-concrete (RC) deep beams. This ensemble learning-based system combines two supervised learning models—the support vector machine (SVM) and least-squares support vector machine (LS-SVM)—with the SOS optimization algorithm as the optimizer. In OSVM-AEW, SOS is integrated to simultaneously select the optimal parameters of SVM and LS-SVM, and control the coordination process of the learning outputs. Experimental results show that OSVM-AEW achieves the greatest evaluation criteria for coefficient of correlation (0.9620), coefficient of determination (0.9254), mean absolute error (0.3854 MPa), mean absolute percentage error (7.68%), and root-mean-squared error (0.5265 MPa). This paper demonstrates the successful application of OSVM-AEW as an efficient tool for helping structural engineers in the RC deep beams design process. |
---|---|
ISSN: | 0177-0667 1435-5663 |
DOI: | 10.1007/s00366-019-00753-w |