Distribution of shapes of orthogonal lattices

It was recently shown by Aka, Einsiedler and Shapira that if $d>2$ , the set of primitive vectors on large spheres when projected to the $(d-1)$ -dimensional sphere coupled with the shape of the lattice in their orthogonal complement equidistribute in the product space of the sphere with the spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-06, Vol.39 (6), p.1531-1607
Hauptverfasser: EINSIEDLER, MANFRED, RÜHR, RENÉ, WIRTH, PHILIPP
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was recently shown by Aka, Einsiedler and Shapira that if $d>2$ , the set of primitive vectors on large spheres when projected to the $(d-1)$ -dimensional sphere coupled with the shape of the lattice in their orthogonal complement equidistribute in the product space of the sphere with the space of shapes of $(d-1)$ -dimensional lattices. Specifically, for $d=3,4,5$ some congruence conditions are assumed. By using recent advances in the theory of unipotent flows, we effectivize the dynamical proof to remove those conditions for $d=4,5$ . It also follows that equidistribution takes place with a polynomial error term with respect to the length of the primitive points.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2017.78