When is a dynamical system mean sensitive?

This article is devoted to studying which conditions imply that a topological dynamical system is mean sensitive and which do not. Among other things, we show that every uniquely ergodic, mixing system with positive entropy is mean sensitive. On the other hand, we provide an example of a transitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-06, Vol.39 (6), p.1608-1636
Hauptverfasser: GARCÍA-RAMOS, FELIPE, LI, JIE, ZHANG, RUIFENG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is devoted to studying which conditions imply that a topological dynamical system is mean sensitive and which do not. Among other things, we show that every uniquely ergodic, mixing system with positive entropy is mean sensitive. On the other hand, we provide an example of a transitive system which is cofinitely sensitive or Devaney chaotic with positive entropy but fails to be mean sensitive. As applications of our theory and examples, we negatively answer an open question regarding equicontinuity/sensitivity dichotomies raised by Tu, we introduce and present results of locally mean equicontinuous systems and we show that mean sensitivity of the induced hyperspace does not imply that of the phase space.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2017.101