Microstructural degradation and interdiffusion behavior of NiAl and Ge-modified NiAl coatings deposited on Alloy 602 CA

Ge-modified and conventional nickel aluminide coatings were deposited on Alloy 602 CA via a single-step slurry manufacturing process and diffusion heat treated at 800 °C for 5 h. The effect of Ge-addition to slurry nickel aluminide coatings was investigated with respect to the microstructural degrad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2019-04, Vol.364, p.211-217
Hauptverfasser: Galetz, M.C., Oskay, C., Madloch, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ge-modified and conventional nickel aluminide coatings were deposited on Alloy 602 CA via a single-step slurry manufacturing process and diffusion heat treated at 800 °C for 5 h. The effect of Ge-addition to slurry nickel aluminide coatings was investigated with respect to the microstructural degradation of coatings during isothermal exposure at different temperatures for 100 h. Addition of Ge resulted in the formation of Cr- and Ge-rich precipitates distributed within a β-phase diffusion zone. The inter-diffusion zone (IDZ) consisted of (Ni,Cr)3Ge phase. On the other hand, the employment of pure Al powder led to the formation of Al-rich phases such as ζ and δ near the surface and a strong Al-gradient in the Ge-free β-phase coating. While the extent of microstructural degradation was similar for both coatings after 100 h at 900 °C, exposure at higher temperatures resulted in Kirkendall void formation in the NiAl coating, whereas the initial (Ni,Cr,Fe)3Ge layer transformed into chromium carbides, which in-situ formed a dense interlayer below the aluminide and obstructed interdiffusion in the Ge-containing coating. At 1050 °C, the NiAl coating delaminated due to the severe Kirkendall porosity, which resulted in the oxidation of the interface and nitridation of the alloy and at 1200 °C it led to the complete dissolution of the NiAl coating. The Ge-containing equivalent maintained its integrity and protective behavior in both cases. •Ge-modified NiAl coatings are manufactured via a single-step using a Al and Ge slurry.•Use of Ge and Al powders results in a β-phase coating after heat treatment at 800°C for 5 h•Cr is retained in the IDZ of the coating within the (Ni,Cr,Fe)3Ge, which transforms to Cr23C6 during exposure.•The formation of a dense carbide interlayer in the IDZ of NiGeAl impedes the interdiffusion.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2019.02.048