PathwayMap: Molecular Pathway Association with Self-Normalizing Neural Networks

Drug discovery suffers from high attrition because compounds initially deemed as promising can later show ineffectiveness or toxicity resulting from a poor understanding of their activity profile. In this work, we describe a deep self-normalizing neural network model for the prediction of molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2019-03, Vol.59 (3), p.1172-1181
Hauptverfasser: Jiménez, José, Sabbadin, Davide, Cuzzolin, Alberto, Martínez-Rosell, Gerard, Gora, Jacob, Manchester, John, Duca, José, De Fabritiis, Gianni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drug discovery suffers from high attrition because compounds initially deemed as promising can later show ineffectiveness or toxicity resulting from a poor understanding of their activity profile. In this work, we describe a deep self-normalizing neural network model for the prediction of molecular pathway association and evaluate its performance, showing an AUC ranging from 0.69 to 0.91 on a set of compounds extracted from ChEMBL and from 0.81 to 0.83 on an external data set provided by Novartis. We finally discuss the applicability of the proposed model in the domain of lead discovery. A usable application is available via PlayMolecule.org.
ISSN:1549-9596
1549-960X
DOI:10.1021/acs.jcim.8b00711