Effects of principal stress rotation on wave-induced soil response in a poro-elastoplastic sandy seabed

In this study, a constitutive model is developed in order to investigate wave–seabed interactions. This model takes into account the impact of principal stress rotation (PSR) and is based on the generalized plasticity theory, in which plastic strain generated by PSR is considered an additional item...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2019-12, Vol.14 (6), p.1717-1739
Hauptverfasser: Zhu, J.-F., Zhao, H.-Y., Jeng, D.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a constitutive model is developed in order to investigate wave–seabed interactions. This model takes into account the impact of principal stress rotation (PSR) and is based on the generalized plasticity theory, in which plastic strain generated by PSR is considered an additional item in the constitutive relationship of soil. The normalized loading direction and plastic flow direction were determined based on the stress tensor invariant. Comparisons between the present model and previous Hollow Cylinder Apparatus tests and geotechnical centrifugal wave tests show good agreement. Numerical results show the effects of PSR on predictions of liquefaction potential due to: (a) the cumulative impact of plastic strain in the seafloor and (b) the buildup of pore pressure. Parametric study shows that the model parameters, including the wave and seabed parameters, have significant effects on the wave-induced soil liquefaction.
ISSN:1861-1125
1861-1133
DOI:10.1007/s11440-019-00809-7