A Novel Method for Segmentation and Change Detection of Satellite Images Using Proximal Splitting Algorithm and Multiclass SVM
This paper presents a novel method for segmentation and change detection of multispectral images using proximal splitting-based clustering and multiclass support vector machine (MSVM). Initially, the multitemporal satellite images are preprocessed and then textures are extracted using Difference of...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2019-05, Vol.47 (5), p.853-865 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel method for segmentation and change detection of multispectral images using proximal splitting-based clustering and multiclass support vector machine (MSVM). Initially, the multitemporal satellite images are preprocessed and then textures are extracted using Difference of Offset Gaussian filter. In general, the traditional clustering method uses Euclidean distance as a prime factor for segmentation process. For multitextured images such as remotely sensed images, this metric provides inconsistent output. To achieve better segmented results, proximal splitting algorithm has been proposed. This method has been considered as a solution for iterative minimization problem, which is required to find exact changes between the multitemporal images. The MSVM is chosen to group the segmented clusters into a fixed number of classes, since the clusters obtained from the proximal splitting algorithm are not independent with each other. Then, the classified images are subjected to image differencing method to detect the changes. Experimentation is performed with two real data sets of Landsat7 images, which illustrates that the mean of difference in area obtained by the proposed method is reduced by an average of 35.24% compared to the conventional system. The validity index obtained for data set 1 using proposed algorithm is lower than the existing methods. |
---|---|
ISSN: | 0255-660X 0974-3006 |
DOI: | 10.1007/s12524-019-00941-7 |