Investigation of Mechanical Behaviour of the Bone Cement (PMMA) under Combined Shear and Compression Loading

Generally, implants fixations in orthopedic surgery are insured by bone cement; which is generated mainly from polymer polymethylmethacrylate (PMMA). Since, the cement is identified as the weakest part among bone-cement-prosthesis assembly. Hence, the characterization of mechanical behaviour is of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomimetics, biomaterials and biomedical engineering biomaterials and biomedical engineering, 2019-04, Vol.41, p.37-48
Hauptverfasser: Bachir Bouiadjra, Bel Abbès, Mankour, Abdeldjalil, Ould Chikh, El Bahri, Bouziane, Mohammed Mokhtar, Bendouba, Mustapha, Khellafi, Habib, Djebli, Abdelkader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generally, implants fixations in orthopedic surgery are insured by bone cement; which is generated mainly from polymer polymethylmethacrylate (PMMA). Since, the cement is identified as the weakest part among bone-cement-prosthesis assembly. Hence, the characterization of mechanical behaviour is of a crucial requirement for orthopaedic surgeon’s success. In this study, we investigates the failure behaviour of bone cement, under combined shear and compression loading, for the aim to determine the strengths of bone cement for different mode loading conditions. Therefore, experimental cylindrical specimens has been tested to assess different shear-compression stresses. Based on the mechanical tests, a finite elements model of cylindrical specimens was developed to evaluate stresses distribution in the bone cement under compression, shear and combined shear-compression loading. Results show that, the load which leading to the failure of the cement decreased with increasing of the specimen angle inclination with respect of loading direction.
ISSN:2296-9837
2296-9845
2296-9845
DOI:10.4028/www.scientific.net/JBBBE.41.37