Effect of Cu Doped in MgO on Nanostructures and their Band Gap Energies
Doping of the materials with other metals or transition metals will modify the properties of the nanomaterials. In this work, MgO and Cu doped MgO which are Mg0.95Cu0.05O and Mg0.90Cu0.10O nanomaterials are synthesized using a self-propagating combustion method. The samples are annealed at 900 °C fo...
Gespeichert in:
Veröffentlicht in: | Solid state phenomena 2019-04, Vol.290, p.323-328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doping of the materials with other metals or transition metals will modify the properties of the nanomaterials. In this work, MgO and Cu doped MgO which are Mg0.95Cu0.05O and Mg0.90Cu0.10O nanomaterials are synthesized using a self-propagating combustion method. The samples are annealed at 900 °C for 24 hours. The phase and purity of the synthesized samples are studied using X-Ray Diffraction (XRD) and the result revealed that the samples are pure and single phase. The morphology and crystallite size of the pure samples are examined using Field Emission Scanning Electron Microscope (FESEM). The result shows polyhedral morphology with agglomeration of crystallite and average crystallite size of the samples is between 40 to 210 nm. The band gap obtained for MgO nanostructures is 6.38 eV which is lower than bulk MgO of 7.8 eV. The presence of Cu causes the narrowing the band gap energy of Mg0.95Cu0.05O and Mg0.90Cu0.10O samples to 4.28 eV and 3.35 eV respectively. |
---|---|
ISSN: | 1012-0394 1662-9779 1662-9779 |
DOI: | 10.4028/www.scientific.net/SSP.290.323 |