Fast Convolutional Distance Transform

We propose "convolutional distance transform"- efficient implementations of distance transform. Specifically, we leverage approximate minimum functions to rewrite the distance transform in terms of convolution operators. Thanks to the fast Fourier transform, the proposed convolutional dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2019-06, Vol.26 (6), p.853-857
Hauptverfasser: Karam, Christina, Sugimoto, Kenjiro, Hirakawa, Keigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose "convolutional distance transform"- efficient implementations of distance transform. Specifically, we leverage approximate minimum functions to rewrite the distance transform in terms of convolution operators. Thanks to the fast Fourier transform, the proposed convolutional distance transforms have O(N log N) complexity, where N is the total number of pixels. The proposed acceleration technique is "distance metric agnostic." In the special case that the distance function is a p-norm, the distance transform can be further reduced to separable convolution filters; and for Euclidean norm, we achieve O(N) using constant-time Gaussian filtering.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2019.2910466