Static ecological system analysis
In this article, a new mathematical method for static analysis of compartmental systems is developed in the context of ecology. The method is based on the novel system and subsystem partitioning methodologies through which compartmental systems are decomposed to the utmost level. That is, the distri...
Gespeichert in:
Veröffentlicht in: | Theoretical ecology 2020-03, Vol.13 (1), p.17-52 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a new mathematical method for static analysis of compartmental systems is developed in the context of ecology. The method is based on the novel system and subsystem partitioning methodologies through which compartmental systems are decomposed to the utmost level. That is, the distribution of environmental inputs and intercompartmental system flows as well as the organization of the associated storages generated by these flows within the system is determined individually and separately. Moreover, the transient and the static direct, indirect, acyclic, cycling, and transfer (diact) flows and associated storages transmitted along a given flow path or from one compartment, directly or indirectly, to any other are analytically characterized, systematically classified, and mathematically formulated. A quantitative technique for the categorization of interspecific interactions and the determination of their strength within food webs is also developed based on the diact transactions. The proposed methodology allows for both input- and output-oriented analyses of static ecological networks. The input- and output-oriented analyses are introduced within the proposed mathematical framework and their duality is demonstrated. Major flow- and stock-related concepts and quantities of the current static network analyses are also integrated with the proposed measures and indices within this unifying framework. This comprehensive methodology enables a holistic view and analysis of ecological systems. |
---|---|
ISSN: | 1874-1738 1874-1746 |
DOI: | 10.1007/s12080-019-0421-8 |