Investigation into the Memristor Effect in Nanocrystalline ZnO Films
The results of experimental investigations into the memristor effect and influence of annealing modes on the electrical properties of nanocrystalline zinc-oxide films fabricated by pulsed laser deposition are presented. The possibility of fabricating a nanocrystalline zinc-oxide film by pulsed laser...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2019, Vol.53 (1), p.72-77 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The results of experimental investigations into the memristor effect and influence of annealing modes on the electrical properties of nanocrystalline zinc-oxide films fabricated by pulsed laser deposition are presented. The possibility of fabricating a nanocrystalline zinc-oxide film by pulsed laser deposition in a broad range of electrical (resistivity from 1.44 × 10
–5
to 8.06 × 10
–1
Ω cm) and morphological (roughness from 0.43 ± 0.32 to 6.36 ± 0.38 nm) parameters due to the use of post-growth annealing in oxygen (pressure 10
–1
and 10
–3
Torr, temperature 300 and 800°C, and duration from 1 to 10 h) is presented. It is shown that a nanocrystalline zinc-oxide film 58 ± 2 nm in thickness manifests a stable memristor effect slightly dependent on its morphology—applying a voltage of –2.5 and +4 V leads to switching between states with the resistance 3.3 ± 1.1 × 10
9
and 8.1 ± 3.4 × 10
7
Ω, respectively. These results can be used when developing designs and production processes of resistive random-access memory (RRAM) units based on the memristor effect as well as optoelectronics, microelectronics, and nanoelectronics and nanosystem devices. |
---|---|
ISSN: | 1063-7826 1090-6479 |
DOI: | 10.1134/S1063782619010202 |