Formality conjecture for K3 surfaces
We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra $\operatorname{RHom}^{\bullet }(F,F)$ is formal for any sheaf $F$ polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhan...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2019-05, Vol.155 (5), p.902-911, Article 902 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra
$\operatorname{RHom}^{\bullet }(F,F)$
is formal for any sheaf
$F$
polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/s0010437x19007206 |