Formality conjecture for K3 surfaces

We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra $\operatorname{RHom}^{\bullet }(F,F)$ is formal for any sheaf $F$ polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2019-05, Vol.155 (5), p.902-911, Article 902
Hauptverfasser: Budur, Nero, Zhang, Ziyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra $\operatorname{RHom}^{\bullet }(F,F)$ is formal for any sheaf $F$ polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition.
ISSN:0010-437X
1570-5846
DOI:10.1112/s0010437x19007206