The Bishop–Phelps–Bollobás Property and Absolute Sums
In this paper, we study conditions assuring that the Bishop–Phelps–Bollobás property (BPBp, for short) is inherited by absolute summands of the range space or of the domain space. Concretely, given a pair ( X , Y ) of Banach spaces having the BPBp, if Y 1 is an absolute summand of Y , then ( X , Y...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2019-06, Vol.16 (3), p.1-24, Article 73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study conditions assuring that the Bishop–Phelps–Bollobás property (BPBp, for short) is inherited by absolute summands of the range space or of the domain space. Concretely, given a pair (
X
,
Y
) of Banach spaces having the BPBp,
if
Y
1
is an absolute summand of
Y
, then
(
X
,
Y
1
)
has the BPBp;
if
X
1
is an absolute summand of
X
of type 1 or
∞
, then
(
X
1
,
Y
)
has the BPBp.
Besides, analogous results for the BPBp for compact operators and for the density of norm-attaining operators are also given. We also show that the Bishop–Phelps–Bollobás property for numerical radius is inherited by absolute summands of type 1 or
∞
. Moreover, we provide analogous results for numerical radius attaining operators and for the BPBp for numerical radius for compact operators. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-019-1346-6 |