A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece
Several magmatic-hydrothermal systems in northeastern Greece (western Thrace and Limnos Island) are highly enriched in tellurides which, in addition to native gold and electrum, represent major carriers of precious metals in the ore. Deposition near the porphyry-epithermal transition for several sys...
Gespeichert in:
Veröffentlicht in: | Mineralogy and petrology 2006-07, Vol.87 (3-4), p.241-275 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several magmatic-hydrothermal systems in northeastern Greece (western Thrace and Limnos Island) are highly enriched in tellurides which, in addition to native gold and electrum, represent major carriers of precious metals in the ore. Deposition near the porphyry-epithermal transition for several systems is indicated by field relations and by the presence of key minerals (Pb- and Ag-rich tellurides, Bi-sulfosalts and Bi-tellurides/tellurosulfides). Hessite, stutzite, sylvanite, petzite, coloradoite, altaite, unnamed Ag-sulfotelluride, native tellurium and electrum are abundant in intermediate sulfidation quartz-carbonate veins together with zincian tetrahedrite-group minerals, chalcopyrite and galena. The presence of hessite, goldfieldite, native gold and enargite or famatinite suggests deposition at a high sulfidation state. The main stage of telluride deposition took place at ~275 degrees C at log f Te 2 values of -8.5 to -7.1 and log f S 2 values of -10.8 to -9.0, based on the Fe-content in sphalerite and the sulfide-telluride mineralogy. The close spatial association of telluride mineralization with intrusive centers of intermediate composition, the base metal enrichment and the trace element signature involving Au, Ag, Te, Bi, Sn and Mo suggest that ore-forming components were introduced at the porphyry-epithermal transition. Potential sources of tellurium are the high-K calc-alkaline (western Thrace) to shoshonitic (Limnos) intrusive rocks. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0930-0708 1438-1168 |
DOI: | 10.1007/s00710-006-0131-y |